Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(1): 6-12, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340351

RESUMEN

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Asunto(s)
Investigación Biomédica , Genómica , Animales , Análisis Mutacional de ADN , Bases de Datos Genéticas , Enfermedad/genética , Proyecto Genoma Humano , Humanos , Difusión de la Información , Modelos Animales
2.
Genome Res ; 34(1): 145-159, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38290977

RESUMEN

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Filogenia , Genotipo , Ratones Endogámicos , Fenotipo , Mutación , Variación Genética
3.
Am J Hum Genet ; 110(10): 1787-1803, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751738

RESUMEN

Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.


Asunto(s)
Hernias Diafragmáticas Congénitas , Osteoporosis , Adulto , Humanos , Masculino , Animales , Ratones , Hernias Diafragmáticas Congénitas/genética , Actinas/genética , Mutación Missense/genética , Osteoporosis/genética
4.
Nucleic Acids Res ; 51(D1): D1360-D1366, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399494

RESUMEN

PDCM Finder (www.cancermodels.org) is a cancer research platform that aggregates clinical, genomic and functional data from patient-derived xenografts, organoids and cell lines. It was launched in April 2022 as a successor of the PDX Finder portal, which focused solely on patient-derived xenograft models. Currently the portal has over 6200 models across 13 cancer types, including rare paediatric models (17%) and models from minority ethnic backgrounds (33%), making it the largest free to consumer and open access resource of this kind. The PDCM Finder standardises, harmonises and integrates the complex and diverse data associated with PDCMs for the cancer community and displays over 90 million data points across a variety of data types (clinical metadata, molecular and treatment-based). PDCM data is FAIR and underpins the generation and testing of new hypotheses in cancer mechanisms and personalised medicine development.


Asunto(s)
Neoplasias , Humanos , Niño , Neoplasias/genética , Neoplasias/terapia , Organoides , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mamm Genome ; 34(4): 531-544, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37666946

RESUMEN

Comparing genomic and biological characteristics across multiple species is essential to using model systems to investigate the molecular and cellular mechanisms underlying human biology and disease and to translate mechanistic insights from studies in model organisms for clinical applications. Building a scalable knowledge commons platform that supports cross-species comparison of rich, expertly curated knowledge regarding gene function, phenotype, and disease associations available for model organisms and humans is the primary mission of the Alliance of Genome Resources (the Alliance). The Alliance is a consortium of seven model organism knowledgebases (mouse, rat, yeast, nematode, zebrafish, frog, fruit fly) and the Gene Ontology resource. The Alliance uses a common set of gene ortholog assertions as the basis for comparing biological annotations across the organisms represented in the Alliance. The major types of knowledge associated with genes that are represented in the Alliance database currently include gene function, phenotypic alleles and variants, human disease associations, pathways, gene expression, and both protein-protein and genetic interactions. The Alliance has enhanced the ability of researchers to easily compare biological annotations for common data types across model organisms and human through the implementation of shared programmatic access mechanisms, data-specific web pages with a unified "look and feel", and interactive user interfaces specifically designed to support comparative biology. The modular infrastructure developed by the Alliance allows the resource to serve as an extensible "knowledge commons" capable of expanding to accommodate additional model organisms.


Asunto(s)
Bases de Datos Genéticas , Pez Cebra , Ratas , Ratones , Animales , Humanos , Pez Cebra/genética , Genoma , Genómica , Fenotipo , Internet
6.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339930

RESUMEN

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

7.
Nucleic Acids Res ; 49(D1): D981-D987, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231642

RESUMEN

The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism knowledgebase for the laboratory mouse, a widely used animal model for comparative studies of the genetic and genomic basis for human health and disease. MGD is the authoritative source for biological reference data related to mouse genes, gene functions, phenotypes and mouse models of human disease. MGD is the primary source for official gene, allele, and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. MGD's biocuration scientists curate information from the biomedical literature and from large and small datasets contributed directly by investigators. In this report we describe significant enhancements to the content and interfaces at MGD, including (i) improvements in the Multi Genome Viewer for exploring the genomes of multiple mouse strains, (ii) inclusion of many more mouse strains and new mouse strain pages with extended query options and (iii) integration of extensive data about mouse strain variants. We also describe improvements to the efficiency of literature curation processes and the implementation of an information portal focused on mouse models and genes for the study of COVID-19.


Asunto(s)
COVID-19/prevención & control , Bases de Datos Genéticas , Genoma/genética , Genómica/métodos , Bases del Conocimiento , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Curaduría de Datos/métodos , Modelos Animales de Enfermedad , Epidemias , Ontología de Genes , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Ratones , SARS-CoV-2/fisiología
8.
BMC Genomics ; 23(1): 156, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193494

RESUMEN

BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal ( https://dataportal.europdx.eu/ ), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users' interests.


Asunto(s)
Neoplasias , Animales , Xenoinjertos , Humanos , Difusión de la Información , Ratones , Neoplasias/genética , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mamm Genome ; 33(1): 44-54, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34448927

RESUMEN

The assembled and annotated genomes for 16 inbred mouse strains (Lilue et al., Nat Genet 50:1574-1583, 2018) and two wild-derived strains (CAROLI/EiJ and PAHARI/EiJ) (Thybert et al., Genome Res 28:448-459, 2018) are valuable resources for mouse genetics and comparative genomics. We developed the multiple genome viewer (MGV; http://www.informatics.jax.org/mgv ) to support visualization, exploration, and comparison of genome annotations within and across these genomes. MGV displays chromosomal regions of user-selected genomes as horizontal tracks. Equivalent features across the genome tracks are highlighted using vertical 'swim lane' connectors. Navigation across the genomes is synchronized as a researcher uses the scroll and zoom functions. Researchers can generate custom sets of genes and other genome features to be displayed in MGV by entering genome coordinates, function, phenotype, disease, and/or pathway terms. MGV was developed to be genome agnostic and can be used to display homologous features across genomes of different organisms.


Asunto(s)
Genoma , Genómica , Animales , Bases de Datos Genéticas , Genoma/genética , Internet , Ratones , Ratones Endogámicos , Programas Informáticos
10.
Mamm Genome ; 33(1): 4-18, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34698891

RESUMEN

The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI's mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI's two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org .


Asunto(s)
Bases de Datos Genéticas , Ecosistema , Alelos , Animales , Ontología de Genes , Genómica , Ratones
13.
Nucleic Acids Res ; 47(D1): D801-D806, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407599

RESUMEN

The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism genetic and genome resource for the laboratory mouse. MGD is the authoritative source for biological reference data sets related to mouse genes, gene functions, phenotypes, and mouse models of human disease. MGD is the primary outlet for official gene, allele and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. In this report we describe significant enhancements to MGD, including two new graphical user interfaces: (i) the Multi Genome Viewer for exploring the genomes of multiple mouse strains and (ii) the Phenotype-Gene Expression matrix which was developed in collaboration with the Gene Expression Database (GXD) and allows researchers to compare gene expression and phenotype annotations for mouse genes. Other recent improvements include enhanced efficiency of our literature curation processes and the incorporation of Transcriptional Start Site (TSS) annotations from RIKEN's FANTOM 5 initiative.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica/genética , Genoma/genética , Genómica/tendencias , Alelos , Animales , Internet , Ratones , Anotación de Secuencia Molecular , Terminología como Asunto , Sitio de Iniciación de la Transcripción
14.
Nucleic Acids Res ; 47(D1): D1073-D1079, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30535239

RESUMEN

Patient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients' tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions. The Jackson Laboratory and EMBL-EBI are addressing these challenges by co-developing PDX Finder, a comprehensive open global catalog of PDX models and their associated datasets. Within PDX Finder, model attributes are harmonized and integrated using a previously developed community minimal information standard to support consistent searching across the originating resources. Links to repositories are provided from the PDX Finder search results to facilitate model acquisition and/or collaboration. The PDX Finder resource currently contains information for 1985 PDX models of diverse cancers including those from large resources such as the Patient-Derived Models Repository, PDXNet and EurOPDX. Individuals or organizations that generate and distribute PDXs are invited to increase the 'findability' of their models by participating in the PDX Finder initiative at www.pdxfinder.org.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Neoplasias/genética , Neoplasias/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Almacenamiento y Recuperación de la Información/métodos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Internet , Metadatos/estadística & datos numéricos , Ratones
16.
Lancet ; 394(10197): 511-520, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31395439

RESUMEN

Advances in technologies for assessing genomic variation and an increasing understanding of the effects of genomic variants on health and disease are driving the transition of genomics from the research laboratory into clinical care. Genomic medicine, or the use of an individual's genomic information as part of their clinical care, is increasingly gaining acceptance in routine practice, including in assessing disease risk in individuals and their families, diagnosing rare and undiagnosed diseases, and improving drug safety and efficacy. We describe the major types and measurement tools of genomic variation that are currently of clinical importance, review approaches to interpreting genomic sequence variants, identify publicly available tools and resources for genomic test interpretation, and discuss several key barriers in using genomic information in routine clinical practice.


Asunto(s)
Genómica/métodos , Medicina de Precisión/métodos , Predisposición Genética a la Enfermedad , Humanos , Variantes Farmacogenómicas
17.
Nucleic Acids Res ; 46(D1): D836-D842, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29092072

RESUMEN

The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the key community mouse database which supports basic, translational and computational research by providing integrated data on the genetics, genomics, and biology of the laboratory mouse. MGD serves as the source for biological reference data sets related to mouse genes, gene functions, phenotypes and disease models with an increasing emphasis on the association of these data to human biology and disease. We report here on recent enhancements to this resource, including improved access to mouse disease model and human phenotype data and enhanced relationships of mouse models to human disease.


Asunto(s)
Bases de Datos Genéticas , Genoma , Ratones/genética , Acceso a la Información , Animales , Curaduría de Datos , Modelos Animales de Enfermedad , Genómica , Humanos , Almacenamiento y Recuperación de la Información , Programas Informáticos , Especificidad de la Especie , Interfaz Usuario-Computador , Navegador Web
18.
Nucleic Acids Res ; 46(D1): D221-D228, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126148

RESUMEN

The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community.


Asunto(s)
Secuencia de Consenso , Bases de Datos Genéticas , Sistemas de Lectura Abierta , Animales , Curaduría de Datos/métodos , Curaduría de Datos/normas , Bases de Datos Genéticas/normas , Guías como Asunto , Humanos , Ratones , Anotación de Secuencia Molecular , National Library of Medicine (U.S.) , Estados Unidos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA