Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 20(4): 1094-1102, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28968762

RESUMEN

The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other 'omic' data analyses. In response to mounting concern over antimicrobial resistance (AMR), the PATRIC team has been developing new tools that help researchers understand AMR and its genetic determinants. To support comparative analyses, we have added AMR phenotype data to over 15 000 genomes in the PATRIC database, often assembling genomes from reads in public archives and collecting their associated AMR panel data from the literature to augment the collection. We have also been using this collection of AMR metadata to build machine learning-based classifiers that can predict the AMR phenotypes and the genomic regions associated with resistance for genomes being submitted to the annotation service. Likewise, we have undertaken a large AMR protein annotation effort by manually curating data from the literature and public repositories. This collection of 7370 AMR reference proteins, which contains many protein annotations (functional roles) that are unique to PATRIC and RAST, has been manually curated so that it projects stably across genomes. The collection currently projects to 1 610 744 proteins in the PATRIC database. Finally, the PATRIC Web site has been expanded to enable AMR-based custom page views so that researchers can easily explore AMR data and design experiments based on whole genomes or individual genes.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Farmacorresistencia Microbiana/genética , Integración de Sistemas , Biología Computacional/tendencias , Bases de Datos Genéticas/estadística & datos numéricos , Genoma Microbiano , Humanos , Internet , Anotación de Secuencia Molecular
2.
Nucleic Acids Res ; 45(D1): D535-D542, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899627

RESUMEN

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by 'virtual integration' to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma Bacteriano , Genómica/métodos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Anotación de Secuencia Molecular , Proteoma , Proteómica/métodos , Programas Informáticos , Navegador Web
3.
Chromosome Res ; 24(3): 421-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27430641

RESUMEN

Human alpha satellite (AS) sequence domains that currently function as centromeres are typically flanked by layers of evolutionarily older AS that presumably represent the remnants of earlier primate centromeres. Studies on several human chromosomes reveal that these older AS arrays are arranged in an age gradient, with the oldest arrays farthest from the functional centromere and arrays progressively closer to the centromere being progressively younger. The organization of AS on human chromosome 21 (HC21) has not been well-characterized. We have used newly available HC21 sequence data and an HC21p YAC map to determine the size, organization, and location of the AS arrays, and compared them to AS arrays found on other chromosomes. We find that the majority of the HC21 AS sequences are present on the p-arm of the chromosome and are organized into at least five distinct isolated clusters which are distributed over a larger distance from the functional centromere than that typically seen for AS on other chromosomes. Using both phylogenetic and L1 element age estimations, we found that all of the HC21 AS clusters outside the functional centromere are of a similar relatively recent evolutionary origin. HC21 contains none of the ancient AS layers associated with early primate evolution which is present on other chromosomes, possibly due to the fact that the p-arm of HC21 and the other acrocentric chromosomes underwent substantial reorganization about 20 million years ago.


Asunto(s)
Centrómero/genética , Mapeo Cromosómico , Cromosomas Humanos Par 21/genética , ADN Satélite/genética , Evolución Molecular , Familia de Multigenes/genética , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Humanos , Hibridación Fluorescente in Situ , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA