Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Life Sci ; 81(1): 15, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194116

RESUMEN

Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.


Asunto(s)
Calcio , Oligodendroglía , Flujo de Trabajo , Vaina de Mielina , Neuroglía
2.
J Biol Chem ; 299(3): 102974, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738791

RESUMEN

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Asunto(s)
Células Artificiales , Fusión de Membrana , Proteínas SNARE , Caveolinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Sintaxina 1/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982451

RESUMEN

Cajal-Retzius cells (CRs) are a class of transient neurons in the mammalian cortex that play a critical role in cortical development. Neocortical CRs undergo almost complete elimination in the first two postnatal weeks in rodents and the persistence of CRs during postnatal life has been detected in pathological conditions related to epilepsy. However, it is unclear whether their persistence is a cause or consequence of these diseases. To decipher the molecular mechanisms involved in CR death, we investigated the contribution of the PI3K/AKT/mTOR pathway as it plays a critical role in cell survival. We first showed that this pathway is less active in CRs after birth before massive cell death. We also explored the spatio-temporal activation of both AKT and mTOR pathways and reveal area-specific differences along both the rostro-caudal and medio-lateral axes. Next, using genetic approaches to maintain an active pathway in CRs, we found that the removal of either PTEN or TSC1, two negative regulators of the pathway, lead to differential CR survivals, with a stronger effect in the Pten model. Persistent cells in this latter mutant are still active. They express more Reelin and their persistence is associated with an increase in the duration of kainate-induced seizures in females. Altogether, we show that the decrease in PI3K/AKT/mTOR activity in CRs primes these cells to death by possibly repressing a survival pathway, with the mTORC1 branch contributing less to the phenotype.


Asunto(s)
Ácido Kaínico , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Ácido Kaínico/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Convulsiones/inducido químicamente , Mamíferos/metabolismo
5.
Biophys J ; 107(2): 324-335, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028874

RESUMEN

Cell polarization is a fundamental biological process implicated in nearly every aspect of multicellular development. The role of cell-extracellular matrix contacts in the establishment and the orientation of cell polarity have been extensively studied. However, the respective contributions of substrate mechanics and biochemistry remain unclear. Here we propose a believed novel single-cell approach to assess the minimal polarization trigger. Using nonadhered round fibroblast cells, we show that stiffness sensing through single localized integrin-mediated cues are necessary and sufficient to trigger and direct a shape polarization. In addition, the traction force developed by cells has to reach a minimal threshold of 56 ± 1.6 pN for persistent polarization. The polarization kinetics increases with the stiffness of the cue. The polarized state is characterized by cortical actomyosin redistribution together with cell shape change. We develop a physical model supporting the idea that a local and persistent inhibition of actin polymerization and/or myosin activity is sufficient to trigger and sustain the polarized state. Finally, the cortical polarity propagates to an intracellular polarity, evidenced by the reorientation of the centrosome. Our results define the minimal adhesive requirements and quantify the mechanical checkpoint for persistent cell shape and organelle polarization, which are critical regulators of tissue and cell development.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Fibroblastos/fisiología , Actinas/química , Actomiosina/química , Actomiosina/metabolismo , Animales , Adhesión Celular , Centrosoma/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Ratones , Células 3T3 NIH , Polimerizacion , Propiedades de Superficie
6.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642548

RESUMEN

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Asunto(s)
Memoria a Largo Plazo , Dinámicas Mitocondriales , Cuerpos Pedunculados , Animales , Axones/metabolismo , Axones/fisiología , Drosophila melanogaster/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Memoria a Largo Plazo/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
7.
Nat Cell Biol ; 25(3): 425-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797476

RESUMEN

Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -ß receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/ß-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-ß, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-ß.


Asunto(s)
Interferón Tipo I , Quinasas Janus , Quinasas Janus/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Interferón-alfa/farmacología , Interferón-alfa/metabolismo , Endosomas/metabolismo
8.
iScience ; 26(2): 106056, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36761022

RESUMEN

Plasmodium sporozoites are transmitted to a mammalian host during blood feeding by an infected mosquito and invade hepatocytes for initial replication of the parasite into thousands of erythrocyte-invasive merozoites. Here we report that the B9 protein, a member of the 6-cysteine domain protein family, is secreted from sporozoite micronemes and is required for productive invasion of hepatocytes. The N-terminus of B9 forms a beta-propeller domain structurally related to CyRPA, a cysteine-rich protein forming an essential invasion complex in Plasmodium falciparum merozoites. The beta-propeller domain of B9 is essential for sporozoite infectivity and interacts with the 6-cysteine proteins P36 and P52 in a heterologous expression system. Our results suggest that, despite using distinct sets of parasite and host entry factors, Plasmodium sporozoites and merozoites may share common structural modules to assemble protein complexes for invasion of host cells.

9.
Cell Rep ; 42(3): 112221, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36905628

RESUMEN

The neuropeptide VGF was recently proposed as a neurodegeneration biomarker. The Parkinson's disease-related protein leucine-rich repeat kinase 2 (LRRK2) regulates endolysosomal dynamics, a process that involves SNARE-mediated membrane fusion and could regulate secretion. Here we investigate potential biochemical and functional links between LRRK2 and v-SNAREs. We find that LRRK2 directly interacts with the v-SNAREs VAMP4 and VAMP7. Secretomics reveals VGF secretory defects in VAMP4 and VAMP7 knockout (KO) neuronal cells. In contrast, VAMP2 KO "regulated secretion-null" and ATG5 KO "autophagy-null" cells release more VGF. VGF is partially associated with extracellular vesicles and LAMP1+ endolysosomes. LRRK2 expression increases VGF perinuclear localization and impairs its secretion. Retention using selective hooks (RUSH) assays show that a pool of VGF traffics through VAMP4+ and VAMP7+ compartments, and LRRK2 expression delays its transport to the cell periphery. Overexpression of LRRK2 or VAMP7-longin domain impairs VGF peripheral localization in primary cultured neurons. Altogether, our results suggest that LRRK2 might regulate VGF secretion via interaction with VAMP4 and VAMP7.


Asunto(s)
Aparato de Golgi , Proteínas SNARE , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Fusión de Membrana/fisiología , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
10.
Pharmaceutics ; 14(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297607

RESUMEN

Soft nanoparticles, and in particular, nanoliposomes (NL), have attracted increasing interest for their use in food, nutraceuticals, and in particular, in pharmaceutics for drug delivery. Recent data using salmon lecithin NL suggest that these NL, rich in omega-3 (n-3) fatty acids, can improve the bioavailability and transport of molecules through the blood brain barrier (BBB) to target the brain for the prevention and treatment of neurodegenerative diseases. The objective of this study was to characterize the physicochemical properties and analyze the transfer phenomena of salmon lecithin NL over time in neurons to better understand the behavior of NL in an intracellular environment. To test this, primary cultures of cortical neurons from rat embryos were incubated with salmon lecithin NL from day 3 after cell culture, for up to 104 h. The physicochemical properties of NL such as size, speed, morphology and the diffusion coefficient in the live cultures, were studied over time. Image analysis of cell morphology showed dendritic growth and neuronal arborization after 48 h of exposure to NL, for up to 104 h. Results showed an NL stability in size, speed and diffusion coefficient over time, with a peak at 48 h, and then a return to baseline value at the end of incubation. The average speed and diffusion coefficient achieved provided important information on the mode of entry of NL into neurons, and on the slow diffusion rate of NL into the cells. Analysis of videos from 2 h to 104 h showed that significant levels of NL were already internalized by neurons after 3 h incubation. NL appearance and intracellular distribution indicated that they were packed in intracellular compartments similar to endocytic vesicles, suggesting internalization by an active endocytic-like process. The results obtained here demonstrate internalization of NL by cortical neurons by an active endocytic-like process, and suggest the potential use of NL for time-release of therapeutics aimed towards prevention or treatment of neurodegenerative diseases.

11.
Nat Protoc ; 15(1): 102-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836866

RESUMEN

Exosomes are small extracellular vesicles with a diameter of 40-150 nm, and are implicated in cellular homeostasis and cell-cell communication. They can be secreted in bulk in response to cell-extrinsic and cell-intrinsic signals that cause multivesicular body (MVB) fusion with the plasma membrane (PM). However, research on the regulation of exosome release is hampered by the failure of current methods to capture the dynamics of exosome release. Here we describe how live imaging with tetraspanin-based pH-sensitive fluorescent reporters can quantify the MVB-PM fusion rate of single cells. Our approach enables identification of exogenous stimuli, signaling pathways, and fusion complexes, and can map subcellular sites of fusion events. In addition, dual-color imaging can be used to assess simultaneous release of different cargo by MVB exocytosis. This protocol describes the complete imaging experiment, consisting of transient expression of tetraspanin reporters (2 d), live-cell (dual-color) total internal reflection fluorescence microscopy (30-60 min per condition), and semiautomatic image analysis by using a newly developed ImageJ macro (±30 min per condition).


Asunto(s)
Exosomas/metabolismo , Fusión de Membrana , Imagen Molecular/métodos , Análisis de la Célula Individual , Células HeLa , Humanos , Factores de Tiempo
12.
Cell Rep ; 33(12): 108536, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357422

RESUMEN

VAMP7 is involved in autophagy and in exocytosis-mediated neurite growth, two yet unconnected cellular pathways. Here, we find that nutrient restriction and activation of autophagy stimulate axonal growth, while autophagy inhibition leads to loss of neuronal polarity. VAMP7 knockout (KO) neuronal cells show impaired neurite growth, whereas this process is increased in autophagy-null ATG5 KO cells. We find that endoplasmic reticulum (ER)-phagy-related LC3-interacting-region-containing proteins Atlastin 3 and Reticulon 3 (RTN3) are more abundant in autophagy-related protein ATG5 KO and less abundant in VAMP7 KO secretomes. Treatment of neuronal cells with ATG5 or VAMP7 KO conditioned medium does not recapitulate the effect of these KOs on neurite growth. A nanobody directed against VAMP7 inhibits axonal overgrowth induced by nutrient restriction. Furthermore, expression of the inhibitory Longin domain of VAMP7 impairs the subcellular localization of RTN3 in neurons. We propose that VAMP7-dependent secretion of RTN3 regulates neurite growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas R-SNARE/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Humanos
13.
Elife ; 72018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29350616

RESUMEN

While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development.


Asunto(s)
Actinas/metabolismo , Cromosomas/metabolismo , Meiosis , Oocitos/fisiología , Animales , Transporte Biológico , Simulación por Computador , Modelos Biológicos , Estrellas de Mar
14.
iScience ; 4: 127-143, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30240735

RESUMEN

The rigidity of the cell environment can vary tremendously between tissues and in pathological conditions. How this property may affect intracellular membrane dynamics is still largely unknown. Here, using atomic force microscopy, we show that cells deficient in the secretory lysosome v-SNARE VAMP7 are impaired in adaptation to substrate rigidity. Conversely, VAMP7-mediated secretion is stimulated by more rigid substrate and this regulation depends on the Longin domain of VAMP7. We further find that the Longin domain binds the kinase and retrograde trafficking adaptor LRRK1 and that LRRK1 negatively regulates VAMP7-mediated exocytosis. Conversely, VARP, a VAMP7- and kinesin 1-interacting protein, further controls the availability for secretion of peripheral VAMP7 vesicles and response of cells to mechanical constraints. LRRK1 and VARP interact with VAMP7 in a competitive manner. We propose a mechanism whereby biomechanical constraints regulate VAMP7-dependent lysosomal secretion via LRRK1 and VARP tug-of-war control of the peripheral pool of secretory lysosomes.

15.
Integr Biol (Camb) ; 8(6): 693-703, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27169142

RESUMEN

Rigidity sensing is a critical determinant of cell fate and behavior but its molecular mechanisms are poorly understood. Focal adhesions (FAs) are complexes that anchor cells to the matrix. Among their components, vinculin undergoes an auto-inhibitory head-tail interaction that regulates the recruitment of, and interactions with its partners in a force-dependent manner. It is unknown, however, whether this mechanism is involved in substrate rigidity sensing. Here, we use a range of quantitative fluorescence microscopies on live human Mesenchymal Stem Cells to address this question. We identify two distinct rigidity-sensing molecular modules in FAs, one of which involves vinculin and talin, is regulated by vinculin head-tail interaction, and targets cell morphology. Vinculin and talin are recruited independently in a rigidity-dependent manner to FAs where they directly interact in a rigidity-independent stoichiometry at a site proximal to talin head. Vinculin head-tail interaction is required on soft substrates to destabilize vinculin and talin in FAs, and to allow hMSCs branching. Another module involves paxillin and FAK, which soft substrates also destabilize, but independently of vinculin head-tail interaction. This multi-modularity may be key to allow a versatile response to complex biomechanical cues.


Asunto(s)
Adhesiones Focales/fisiología , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Talina/fisiología , Vinculina/fisiología , Adhesión Celular , Tamaño de la Célula , Células Cultivadas , Citoesqueleto/fisiología , Módulo de Elasticidad/fisiología , Humanos , Estrés Mecánico
17.
Dev Cell ; 23(1): 166-80, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22705394

RESUMEN

The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown. Here, we show that the TI-VAMP/VAMP7 partner Varp, a Rab21 guanine nucleotide exchange factor, interacts with GolginA4 and the kinesin 1 Kif5A. Activated Rab21-GTP in turn binds to MACF1, an actin and microtubule regulator, which is itself a partner of GolginA4. These components are required for directed movement of TI-VAMP/VAMP7 vesicles from the cell center to the cell periphery. The molecular mechanisms uncovered here suggest an integrated view of the transport of vesicles carrying a specific v-SNARE toward the cell surface.


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , Proteínas R-SNARE/metabolismo , Animales , Células COS , Chlorocebus aethiops , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Nocodazol/farmacología , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA