Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38106002

RESUMEN

Nerve growth factor (NGF) monoclonal antibodies (mAb) are one of the few patient-validated non-opioid treatments for chronic pain, despite failing to gain FDA approval due to worsened joint damage in some osteoarthritis patients. Herein, we demonstrate that neuropilin-1 (NRP1) is a nociceptor-enriched co-receptor for NGF that is necessary for tropomyosin-related kinase A (TrkA) signaling of pain. NGF binds NRP1 with nanomolar affinity. NRP1 and G Alpha Interacting Protein C-terminus 1 (GIPC1), a NRP1/TrkA adaptor, are coexpressed with TrkA in human and mouse nociceptors. NRP1 small molecule inhibitors and blocking mAb prevent NGF-stimulated action potential firing and activation of Na+ and Ca2+ channels in human and mouse nociceptors and abrogate NGF-evoked and inflammatory nociception in mice. NRP1 knockdown blunts NGF-stimulated TrkA phosphorylation, kinase signaling and transcription, whereas NRP1 overexpression enhances NGF and TrkA signaling. As well as interacting with NGF, NRP1 forms a heteromeric complex with TrkA. NRP1 thereby chaperones TrkA from the biosynthetic pathway to the plasma membrane and then to signaling endosomes, which enhances NGF-induced TrkA dimerization, endocytosis and signaling. Knockdown of GIPC1, a PDZ-binding protein that scaffolds NRP1 and TrkA to myosin VI, abrogates NGF-evoked excitation of nociceptors and pain-like behavior in mice. We identify NRP1 as a previously unrecognized co-receptor necessary for NGF/TrkA pain signaling by direct NGF binding and by chaperoning TrkA to the plasma membrane and signaling endosomes via the adaptor protein GIPC1. Antagonism of NRP1 and GIPC1 in nociceptors offers a long-awaited alternative to systemic sequestration of NGF with mAbs for the treatment of pain.

2.
Cell Mol Gastroenterol Hepatol ; 18(4): 101334, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38494056

RESUMEN

BACKGROUND & AIMS: Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS: In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 µg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS: Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 µmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS: Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA