Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microcirculation ; 31(5): e12859, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38818977

RESUMEN

OBJECTIVE: The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS: Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS: Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS: Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.


Asunto(s)
Células Endoteliales , Gelatina , Microvasos , Óxido Nítrico Sintasa de Tipo III , Animales , Células Endoteliales/metabolismo , Células Endoteliales/citología , Ratones , Femenino , Masculino , Microvasos/citología , Microvasos/metabolismo , Microvasos/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacología , Geles , Antígenos CD/metabolismo , Cadherinas/metabolismo , Cultivo Primario de Células , Endotelio Vascular/metabolismo , Endotelio Vascular/citología
2.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867447

RESUMEN

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inflamación/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología , Ratones Noqueados , Endotelio/metabolismo , Permeabilidad Capilar , Endotelio Vascular/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806312

RESUMEN

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.


Asunto(s)
Conexinas , Acoplamiento Neurovascular , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Microcirculación
4.
Am J Physiol Heart Circ Physiol ; 310(8): H1039-44, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921435

RESUMEN

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, ß-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of ß-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet-activating factor (PAF) as agonist. We report that PAF-stimulates S-nitrosylation of VE-cadherin, which disrupts its association with ß-catenin. In addition, based on inhibition of nitric oxide production, our results strongly suggest that S-nitrosylation is required for VE-cadherin phosphorylation on tyrosine and for its internalization. Our results unveil an important mechanism to regulate phosphorylation of junctional proteins in association with S-nitrosylation.


Asunto(s)
Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Vasos Coronarios/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Procesamiento Proteico-Postraduccional , Vénulas/metabolismo , Uniones Adherentes/efectos de los fármacos , Animales , Transporte Biológico , Permeabilidad Capilar/efectos de los fármacos , Cateninas/metabolismo , Bovinos , Línea Celular , Vasos Coronarios/efectos de los fármacos , Cricetinae , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Óxido Nítrico/metabolismo , Nitrosación , Fosforilación , Factor de Activación Plaquetaria/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Tirosina , beta Catenina/metabolismo , Catenina delta
5.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091840

RESUMEN

S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using ß-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.

6.
J Control Release ; 370: 392-404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663750

RESUMEN

The toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS. However, the adsorption and release capability for different NSAIDs is scarcely described. In this work, the biocompatible UiO-66(Zr) MOF was used to study the adsorption and release conditions of ibuprofen, naproxen, and diclofenac using a theoretical and experimental approximation. DFT results showed that the MOF-drug interaction was due to an intermolecular hydrogen bond between protons of the groups in the defect sites, (µ3 - OH, and - OH2) and a lone pair of oxygen carboxyl functional group of the NSAIDs. Also, the experimental results suggest that the solvent where the drug is dissolved affects the adsorption process. The adsorption kinetics are similar between the drugs, but the maximum load capacity differs for each drug. The release kinetics assay showed a solvent dependence kinetics whose maximum liberation capacity is affected by the interaction between the drug and the material. Finally, the biological assays show that none of the systems studied are cytotoxic for HMVEC. Additionally, the wound healing assay suggests that the UiO-66(Zr) material has potential application on the wound healing process. However, further studies should be done.


Asunto(s)
Antiinflamatorios no Esteroideos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estructuras Metalorgánicas , Naproxeno , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/química , Estructuras Metalorgánicas/química , Naproxeno/administración & dosificación , Naproxeno/química , Naproxeno/farmacocinética , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/farmacocinética , Humanos , Adsorción , Portadores de Fármacos/química , Diclofenaco/administración & dosificación , Diclofenaco/química , Diclofenaco/farmacocinética , Supervivencia Celular/efectos de los fármacos , Ácidos Ftálicos
7.
Oxid Med Cell Longev ; 2021: 2678134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33688389

RESUMEN

Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca2+]i of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O2 ·-) formation, and endothelial cell [Ca2+]i were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide 10Panx (60 µM) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOSS1177) and Akt at serine 473 (P-AktS473). In addition, probenecid or 10Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca2+]i increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca2+ ions from the buffer solution and in the presence of 100 µM mibefradil or 10 µM Ni2+. As expected, Ni2+ also abolished the increment in [Ca2+]i. Expression of Nav1.2, Nav1.6, and Cav3.2 isoforms of voltage-dependent Na+ and Ca2+ channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O2 ·- production. Treatment with 10 µM TEMPOL or 100 µM apocynin prevented the increase in O2 ·- formation, ACh-induced vasodilation, P-eNOSS1177, and P-AktS473 observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Nav channels and Cav3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOSS1177, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.


Asunto(s)
Conexinas/metabolismo , Células Endoteliales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Vasodilatación , Animales , Arterias/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio , Conexinas/antagonistas & inhibidores , Células Endoteliales/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , NADPH Oxidasas/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Superóxidos/metabolismo , Tetrodotoxina/farmacología , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA