Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 476(9): 1353-1368, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38570355

RESUMEN

Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.


Asunto(s)
Glucólisis , Humanos , Glucólisis/fisiología , Animales , Adaptación Fisiológica , Interacciones Huésped-Patógeno , Factor 1 Inducible por Hipoxia/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G452-G465, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070751

RESUMEN

Mucin O-linked glycans are important mediators of host-microbiota-pathogen interactions in the gastrointestinal tract. The major component of intestinal mucus, the MUC2 mucin, is densely glycosylated, with up to 80% of its weight-to-volume ratio represented by O-linked glycans. Glycosylation of secretory gel-forming mucins has an enormous impact on intestinal barrier function, microbial metabolism, and mucus colonization by both pathogenic and commensal microbes. Mucin O-glycans and glycan-derived sugars may be degraded and used as a nutrient source and may regulate microbial gene expression and virulence. Short-chain fatty acids, produced as a by-product of glycan fermentation, can regulate host immunity and goblet cell activity and are important for host-microbe homeostasis. Mucin glycans may also act as microbial binding sites, influencing intestinal colonization and translocation through the mucus gel barrier. Recent findings indicate that alterations to mucin glycosylation impact the susceptibility of mucins to degradation, resulting in altered barrier function and intestinal permeability. Alterations to mucin glycosylation patterns are frequently observed during intestinal infection and inflammation and have been implicated in microbiota dysbiosis and expansion of pathobionts. Recent work has demonstrated that these alterations can play key roles in disease pathogenesis. The precise mechanisms remain obscure. This review highlights the important roles of O-linked glycans in host-microbe interactions and disease pathogenesis in the context of intestinal infections.


Asunto(s)
Microbiota , Mucinas , Humanos , Mucinas/metabolismo , Mucosa Intestinal/metabolismo , Disbiosis , Interacciones Huésped-Patógeno , Homeostasis , Polisacáridos/química , Mucina 2/metabolismo
3.
Eur J Clin Microbiol Infect Dis ; 42(12): 1405-1423, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897520

RESUMEN

In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 ß-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Biopelículas , Percepción de Quorum , Farmacorresistencia Bacteriana Múltiple/genética
4.
BMC Gastroenterol ; 20(1): 64, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164535

RESUMEN

BACKGROUND: Endoscopic retrograde cholangio-pancreatography (ERCP) is commonly performed in the management of pancreatic and biliary disease. Duodenoscopes are specialized endoscopes used to perform ERCP, and inherent to their design, a high rate of persistent bacterial contamination exists even after automated reprocessing and disinfection. Consequently, in recent years, ERCP has been associated with infection transmission, leading to several fatal patient outbreaks. Due to increasing fears over widespread future duodenoscope-related outbreaks, regulatory bodies have called for alterations in the design of duodenoscopes. A duodenoscope has recently been developed that employs a disposable cap. This novel design theoretically eliminates the mechanism behind persistent bacterial contamination and infection transmission. However, there are no data demonstrating persistent bacterial contamination rates, technical success rates, or clinical outcomes associated with these duodenoscopes. METHODS: A parallel arm randomized controlled trial will be performed for which 520 patients will be recruited. The study population will consist of consecutive patients undergoing ERCP procedures for any indication at a high-volume tertiary care centre in Calgary, Alberta, Canada. Patients will be randomized to an intervention group, that will undergo ERCP with a novel duodenoscope with disposable cap, or to a control group who will undergo ERCP with a traditional duodenoscope. Co-primary outcomes will include persistent bacterial contamination rates (post automated reprocessing) and ERCP technical success rates. Secondary outcomes include clinical success rates, overall and specific early and late adverse event rates, 30-day mortality and healthcare utilization rates, procedure and reprocessing times, and ease of device use. DISCUSSION: The ICECAP trial will answer important questions regarding the use of a novel duodenoscope with disposable cap. Specifically, persistent bacterial contamination, technical performance, and relevant clinical outcomes will be assessed. Given the mortality and morbidity burden associated with ERCP-related infectious outbreaks, the results of this study have the capacity to be impactful at an international level. TRIAL REGISTRATION: This trial was registered on clinicaltrials.gov (NCT04040504) on July 31, 2019.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica/instrumentación , Infección Hospitalaria/prevención & control , Duodenoscopios/microbiología , Contaminación de Equipos/prevención & control , Control de Infecciones/métodos , Equipos Desechables , Diseño de Equipo , Humanos
5.
Am J Physiol Gastrointest Liver Physiol ; 314(2): G143-G149, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025733

RESUMEN

A diverse range of effects of the intestinal microbiota on mucosal defense and injury has become increasingly clear over the past decade. Hydrogen sulfide (H2S) has emerged as an important mediator of many physiological functions, including gastrointestinal mucosal defense and repair. Hydrogen sulfide is produced by gastrointestinal tract tissues and by bacteria residing within the gut and can influence the function of a wide range of cells. The microbiota also appears to be an important target of hydrogen sulfide. H2S donors can modify the gut microbiota, and the gastrointestinal epithelium is a major site of oxidation of microbial-derived H2S. When administered together with nonsteroidal anti-inflammatory drugs, H2S can prevent some of the dysbiosis those drugs induce, possibly contributing to the observed prevention of gastrointestinal damage. Exogenous H2S can also markedly reduce the severity of experimental colitis and plays important roles in modulating epithelial cell-mucus-bacterial interactions in the intestine, contributing to its ability to promote resolution of inflammation and repair of tissue injury. In this paper we review recent studies examining the roles of H2S in mucosal defense, the possibility that H2S can damage the gastrointestinal epithelium, and effects of H2S on the gut microbiota and on mucus and biofilm interactions in the context of intestinal inflammation.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Sulfuro de Hidrógeno/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Antibacterianos/toxicidad , Antiinflamatorios no Esteroideos/toxicidad , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Disbiosis , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Sulfuro de Hidrógeno/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Probióticos/farmacología
6.
Am J Pathol ; 187(11): 2486-2498, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28823873

RESUMEN

The intestinal mucous layer provides a critical host defense against pathogen exposure and epithelial injury, yet little is known about how enteropathogens may circumvent this physiologic barrier. Giardia duodenalis is a small intestinal parasite responsible for diarrheal disease and chronic postinfectious illness. This study reveals a complex interaction at the surface of epithelial cells, between G. duodenalis and the intestinal mucous layer. Here, we reveal mechanisms whereby G. duodenalis evades and disrupts the first line of host defense by degrading human mucin-2 (MUC2), depleting mucin stores and inducing differential gene expression in the mouse small and large intestines. Human colonic biopsy specimens exposed to G. duodenalis were depleted of mucus, and in vivo mice infected with G. duodenalis had a thinner mucous layer and demonstrated differential Muc2 and Muc5ac mucin gene expression. Infection in Muc2-/- mice elevated trophozoite colonization in the small intestine and impaired weight gain. In vitro, human LS174T goblet-like cells were depleted of mucus and had elevated levels of MUC2 mRNA expression after G. duodenalis exposure. Importantly, the cysteine protease inhibitor E64 prevented mucous degradation, mucin depletion, and the increase in MUC2 expression. This article describes a novel role for Giardia's cysteine proteases in pathogenesis and how Giardia's disruptions of the mucous barrier facilitate bacterial translocation that may contribute to the onset and propagation of disease.


Asunto(s)
Células Epiteliales/metabolismo , Giardiasis/genética , Mucinas/genética , Moco/metabolismo , Animales , Traslocación Bacteriana/genética , Proteasas de Cisteína/metabolismo , Femenino , Giardia lamblia/genética , Giardiasis/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Mucinas/metabolismo
7.
PLoS Pathog ; 11(5): e1004853, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25946018

RESUMEN

Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1ß by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.


Asunto(s)
Brucella abortus/inmunología , Brucelosis/inmunología , Lipopolisacáridos/inmunología , Mortalidad Prematura , Neutrófilos/citología , Brucella abortus/aislamiento & purificación , Muerte Celular , Citocinas/metabolismo , Humanos , Inmunidad Innata/inmunología , Leucocitos/metabolismo
8.
BMC Microbiol ; 17(1): 70, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28330466

RESUMEN

BACKGROUND: The nasopharyngeal (NP) microbiota plays an important role in bovine health, comprising a rich and diverse microbial community. The nasopharynx is also the niche for potentially pathogenic agents which are associated with bovine respiratory disease (BRD), a serious and costly illness in feedlot cattle. We used 14 beef heifers from a closed and disease-free herd to assess the dynamics of the NP microbiota of cattle that are transported to a feedlot. Cattle were sampled prior to transport to the feedlot (day 0) and at days 2, 7, and 14. RESULTS: The structure of the NP microbiota changed significantly over the course of the study, with the largest shift occurring between day 0 (prior to transport) and day 2 (P < 0.001). Phylogenetic diversity and richness increased following feedlot placement (day 2; P < 0.05). The genera Pasteurella, Bacillus, and Proteus were enriched at day 0, Streptococcus and Acinetobacter at day 2, Bifidobacterium at day 7, and Mycoplasma at day 14. The functional potential of the NP microbiota was assessed using PICRUSt, revealing that replication and repair, as well as translation pathways, were more relatively abundant in day 14 samples. These differences were driven mostly by Mycoplasma. Although eight cattle were culture-positive for the BRD-associated bacterium Pasteurella multocida at one or more sampling times, none were culture-positive for Mannheimia haemolytica or Histophilus somni. CONCLUSIONS: This study investigated the effect that feedlot placement has on the NP microbiota of beef cattle over a 14-d period. Within two days of transport to the feedlot, the NP microbiota changed significantly, increasing in both phylogenetic diversity and richness. These results demonstrate that there is an abrupt shift in the NP microbiota of cattle after transportation to a feedlot. This may have importance for understanding why cattle are most susceptible to BRD after feedlot placement.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Bovinos/microbiología , Microbiota , Nasofaringe/microbiología , Animales , Bacterias/genética , Biodiversidad , Complejo Respiratorio Bovino/microbiología , ADN Bacteriano , Genes Bacterianos , Vivienda para Animales , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Factores de Tiempo
9.
Anaerobe ; 47: 157-164, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28526497

RESUMEN

Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Fusobacterium necrophorum/inmunología , Fusobacterium necrophorum/fisiología , Neutrófilos/inmunología , Polisacáridos Bacterianos/metabolismo , Porphyromonas/inmunología , Porphyromonas/fisiología , Animales , Bovinos , Fusobacterium necrophorum/efectos de los fármacos , Interacciones Huésped-Patógeno , Neutrófilos/efectos de los fármacos , Oxidantes/metabolismo , Porphyromonas/efectos de los fármacos
10.
J Nematol ; 49(4): 348-356, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29353922

RESUMEN

The microbiome influences host processes including nutritional availability, development, immunity, and behavioral responses. Caenorhabditis elegans is a powerful model to study molecular mechanisms of host-microbial interactions. Recent efforts have been made to profile the natural microbiome of C. elegans, laying a foundation for mechanistic studies of host-microbiome interactions in this genetically tractable model system. Studies using single-species microbes, multi-microbial systems, and humanized worm-microbiome interaction studies reveal metabolic and microbial-microbial interactions relevant in higher organisms. This article discusses recent developments in modeling the effects of host-microbiome interactions in C. elegans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA