Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Invest ; 117(10): 2952-61, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17885684

RESUMEN

The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particulate matter might accelerate thrombosis. We found that mice treated with a dose of well characterized particulate matter of less than 10 microM in diameter exhibited a shortened bleeding time, decreased prothrombin and partial thromboplastin times (decreased plasma clotting times), increased levels of fibrinogen, and increased activity of factor II, VIII, and X. This prothrombotic tendency was associated with increased generation of intravascular thrombin, an acceleration of arterial thrombosis, and an increase in bronchoalveolar fluid concentration of the prothrombotic cytokine IL-6. Knockout mice lacking IL-6 were protected against particulate matter-induced intravascular thrombin formation and the acceleration of arterial thrombosis. Depletion of macrophages by the intratracheal administration of liposomal clodronate attenuated particulate matter-induced IL-6 production and the resultant prothrombotic tendency. Our findings suggest that exposure to particulate matter triggers IL-6 production by alveolar macrophages, resulting in reduced clotting times, intravascular thrombin formation, and accelerated arterial thrombosis. These results provide a potential mechanism linking ambient particulate matter exposure and thrombotic events.


Asunto(s)
Coagulación Sanguínea/genética , Trombosis de las Arterias Carótidas/inducido químicamente , Trombosis de las Arterias Carótidas/genética , Interleucina-6/fisiología , Material Particulado/toxicidad , Animales , Factores de Coagulación Sanguínea/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , Cloruros , Ácido Clodrónico/administración & dosificación , Compuestos Férricos/toxicidad , Interleucina-6/genética , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Ratones , Ratones Noqueados , Tiempo de Protrombina , Trombina/metabolismo
2.
FASEB J ; 23(7): 2055-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19237507

RESUMEN

Elevated ambient levels of particulate matter air pollution are associated with excess daily mortality, largely attributable to increased rates of cardiovascular events. We have previously reported that particulate matter induces p53-dependent apoptosis in primary human alveolar epithelial cells. Activation of the intrinsic apoptotic pathway by p53 often requires the transcription of the proapoptotic Bcl-2 proteins Noxa, Puma, or both. In this study, we exposed alveolar epithelial cells in culture and mice to fine particulate matter <2.5 microm in diameter (PM(2.5)) collected from the ambient air in Washington, D. C. Exposure to PM(2.5) induced apoptosis in primary alveolar epithelial cells from wild-type but not Noxa(-/-) mice. Twenty-four hours after the intratracheal instillation of PM(2.5), wild-type mice showed increased apoptosis in the lung and increased levels of mRNA encoding Noxa but not Puma. These changes were associated with increased permeability of the alveolar-capillary membrane and inflammation. All of these findings were absent or attenuated in Noxa(-/-) animals. We conclude that PM(2.5)-induced cell death requires Noxa both in vitro and in vivo and that Noxa-dependent cell death might contribute to PM-induced alveolar epithelial dysfunction and the resulting inflammatory response.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Inflamación/inducido químicamente , Enfermedades Pulmonares/patología , Material Particulado/efectos adversos , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Muerte Celular , Ratones , Ratones Noqueados , Tamaño de la Partícula , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/análisis , Proteínas Supresoras de Tumor/análisis , Regulación hacia Arriba
3.
Free Radic Biol Med ; 46(10): 1386-91, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19268526

RESUMEN

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status found in metazoans that is known to be activated by stimuli that increase the cellular AMP/ATP ratio. Full activation of AMPK requires specific phosphorylation within the activation loop of the catalytic domain of the alpha-subunit by upstream kinases such as the serine/threonine protein kinase LKB1. Here we show that hypoxia activates AMPK through LKB1 without an increase in the AMP/ATP ratio. Hypoxia increased reactive oxygen species (ROS) levels and the antioxidant EUK-134 abolished the hypoxic activation of AMPK. Cells deficient in mitochondrial DNA (rho(0) cells) failed to activate AMPK during hypoxia but are able to in the presence of exogenous H(2)O(2). Furthermore, we provide genetic evidence that ROS generated within the mitochondrial electron transport chain and not oxidative phosphorylation is required for hypoxic activation of AMPK. Collectively, these data indicate that oxidative stress and not an increase in the AMP/ATP ratio is required for hypoxic activation of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Fibroblastos/enzimología , Mitocondrias/enzimología , Compuestos Organometálicos/farmacología , Salicilatos/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Animales , Dominio Catalítico/genética , Línea Celular , Complejo III de Transporte de Electrones/deficiencia , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Peróxido de Hidrógeno/metabolismo , Hipoxia , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
J Biol Chem ; 284(4): 2176-86, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19033436

RESUMEN

We have previously reported that airborne particulate matter air pollution (PM) activates the intrinsic apoptotic pathway in alveolar epithelial cells through a pathway that requires the mitochondrial generation of reactive oxygen species (ROS) and the activation of p53. We sought to examine the source of mitochondrial oxidant production and the molecular links between ROS generation and the activation of p53 in response to PM exposure. Using a mitochondrially targeted ratiometric sensor (Ro-GFP) in cells lacking mitochondrial DNA (rho0 cells) and cells stably expressing a small hairpin RNA directed against the Rieske iron-sulfur protein, we show that site III of the mitochondrial electron transport chain is primarily responsible for fine PM (PM2.5)-induced oxidant production. In alveolar epithelial cells, the overexpression of SOD1 prevented the PM2.5-induced ROS generation from the mitochondria and prevented cell death. Infection of mice with an adenovirus encoding SOD1 prevented the PM2.5-induced death of alveolar epithelial cells and the associated increase in alveolar-capillary permeability. Treatment with PM2.5 resulted in the ROS-mediated activation of the oxidant-sensitive kinase ASK1 and its downstream kinase JNK. Murine embryonic fibroblasts from ASK1 knock-out mice, alveolar epithelial cells transfected with dominant negative constructs against ASK1, and pharmacologic inhibition of JNK with SP600125 (25 microM) prevented the PM2.5-induced phosphorylation of p53 and cell death. We conclude that particulate matter air pollution induces the generation of ROS primarily from site III of the mitochondrial electron transport chain and that these ROS activate the intrinsic apoptotic pathway through ASK1, JNK, and p53.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Apoptosis/efectos de los fármacos , Complejo III de Transporte de Electrones/metabolismo , Células Epiteliales/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Mitocondrias/efectos de los fármacos , Alveolos Pulmonares/citología , Animales , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Oxidantes/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA