Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2302239121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470927

RESUMEN

Humans coordinate their eye, head, and body movements to gather information from a dynamic environment while maximizing reward and minimizing biomechanical and energetic costs. However, such natural behavior is not possible in traditional experiments employing head/body restraints and artificial, static stimuli. Therefore, it is unclear to what extent mechanisms of fixation selection discovered in lab studies, such as inhibition-of-return (IOR), influence everyday behavior. To address this gap, participants performed nine real-world tasks, including driving, visually searching for an item, and building a Lego set, while wearing a mobile eye tracker (169 recordings; 26.6 h). Surprisingly, in all tasks, participants most often returned to what they just viewed and saccade latencies were shorter preceding return than forward saccades, i.e., consistent with facilitation, rather than inhibition, of return. We hypothesize that conservation of eye and head motor effort ("laziness") contributes. Correspondingly, we observed center biases in fixation position and duration relative to the head's orientation. A model that generates scanpaths by randomly sampling these distributions reproduced all return phenomena we observed, including distinct 3-fixation sequences for forward versus return saccades. After controlling for orbital eccentricity, one task (building a Lego set) showed evidence for IOR. This, along with small discrepancies between model and data, indicates that the brain balances minimization of motor costs with maximization of rewards (e.g., accomplished by IOR and other mechanisms) and that the optimal balance varies according to task demands. Supporting this account, the orbital range of motion used in each task traded off lawfully with fixation duration.


Asunto(s)
Encéfalo , Movimientos Sacádicos , Humanos , Inhibición Psicológica , Fijación Ocular
2.
Proc Natl Acad Sci U S A ; 117(52): 33161-33169, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33328275

RESUMEN

There is considerable support for the hypothesis that perception of heading in the presence of rotation is mediated by instantaneous optic flow. This hypothesis, however, has never been tested. We introduce a method, termed "nonvarying phase motion," for generating a stimulus that conveys a single instantaneous optic flow field, even though the stimulus is presented for an extended period of time. In this experiment, observers viewed stimulus videos and performed a forced-choice heading discrimination task. For nonvarying phase motion, observers made large errors in heading judgments. This suggests that instantaneous optic flow is insufficient for heading perception in the presence of rotation. These errors were mostly eliminated when the velocity of phase motion was varied over time to convey the evolving sequence of optic flow fields corresponding to a particular heading. This demonstrates that heading perception in the presence of rotation relies on the time-varying evolution of optic flow. We hypothesize that the visual system accurately computes heading, despite rotation, based on optic acceleration, the temporal derivative of optic flow.


Asunto(s)
Percepción de Movimiento , Flujo Optico , Aceleración , Adulto , Discriminación en Psicología , Femenino , Humanos , Masculino , Rotación , Tiempo
3.
J Neurosci ; 40(19): 3815-3826, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253362

RESUMEN

Autism spectrum disorder (ASD) is characterized partly by atypical attentional engagement, reflected in exaggerated and variable responses to sensory stimuli. Attentional engagement is known to be regulated by the locus ceruleus (LC). Moderate baseline LC activity globally dampens neural responsivity and is associated with adaptive deployment and narrowing of attention to task-relevant stimuli. In contrast, increased baseline LC activity enhances neural responsivity across cortex and widening of attention to environmental stimuli regardless of their task relevance. Given attentional atypicalities in ASD, this study is the first to evaluate whether, under different attentional task demands, individuals with ASD exhibit a different profile of LC activity compared with typically developing controls. Males and females with ASD and age- and gender-matched controls participated in a one-back letter detection test while task-evoked pupillary responses, an established correlate for LC activity, were recorded. Participants completed this task in two conditions, either in the absence or presence of distractor auditory tones. Compared with controls, individuals with ASD evinced atypical pupillary responses in the presence versus absence of distractors. Notably, this atypical pupillary profile was evident despite the fact that both groups exhibited equivalent task performance. Moreover, between-group differences in pupillary responses were observed specifically in response to task-relevant events, providing confirmation that the group differences most likely were specifically associated with distinctions in LC activity. These findings suggest that individuals with ASD show atypical modulation of LC activity with changes in attentional demands, offering a possible mechanistic and neurobiological account for attentional atypicalities in ASD.SIGNIFICANCE STATEMENT Individuals with autism spectrum disorder (ASD) exhibit atypical attentional behaviors, including altered sensory responses and atypical fixedness, but the neural mechanism underlying these behaviors remains elusive. One candidate mechanism is atypical locus ceruleus (LC) activity, as the LC plays a critical role in attentional modulation. Specifically, LC activity is involved in regulating the trade-off between environmental exploration and focused attention. This study shows that, under tightly controlled conditions, task-evoked pupil responses, an LC activity proxy, are lower in individuals with ASD than in controls, but only in the presence of task-irrelevant stimuli. This suggests that individuals with ASD evince atypical modulation of LC activity in accordance with changes in attentional demands, offering a mechanistic account for attentional atypicalities in ASD.


Asunto(s)
Atención/fisiología , Trastorno del Espectro Autista/fisiopatología , Locus Coeruleus/fisiopatología , Adulto , Femenino , Humanos , Masculino , Reflejo Pupilar/fisiología
4.
Sci Adv ; 8(16): eabi9979, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35442730

RESUMEN

The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the physiological finding that a common neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time-dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to saccades, and task-dependent distortion of this saccade-locked pupil response.

5.
Elife ; 112022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389340

RESUMEN

Early visual cortex exhibits widespread hemodynamic responses in the absence of visual stimulation, which are entrained to the timing of a task and not predicted by local spiking or local field potential. Such task-related responses (TRRs) covary with reward magnitude and physiological signatures of arousal. It is unknown, however, if TRRs change on a trial-to-trial basis according to behavioral performance and task difficulty. If so, this would suggest that TRRs reflect arousal on a trial-to-trial timescale and covary with critical task and behavioral variables. We measured functional magnetic resonance imaging blood-oxygen-level-dependent (fMRI-BOLD) responses in the early visual cortex of human observers performing an orientation discrimination task consisting of separate easy and hard runs of trials. Stimuli were presented in a small portion of one hemifield, but the fMRI response was measured in the ipsilateral hemisphere, far from the stimulus representation and focus of spatial attention. TRRs scaled in amplitude with task difficulty, behavioral accuracy, reaction time, and lapses across trials. These modulations were not explained by the influence of respiration, cardiac activity, or head movement on the fMRI signal. Similar modulations with task difficulty and behavior were observed in pupil size. These results suggest that TRRs reflect arousal and behavior on the timescale of individual trials.


Asunto(s)
Corteza Visual , Atención/fisiología , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Estimulación Luminosa , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA