Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35489334

RESUMEN

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Asunto(s)
Cannabis , Enfermedades Cardiovasculares , Alucinógenos , Analgésicos , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Células Endoteliales , Genisteína/farmacología , Genisteína/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones , Receptor Cannabinoide CB1 , Receptores de Cannabinoides
3.
Angew Chem Int Ed Engl ; 63(1): e202315284, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37956221

RESUMEN

The discorhabdin natural products are a large subset of pyrroloiminoquinone alkaloids with a myriad of biological activities. Despite garnering much synthetic attention, few members have thus far been completed, particularly those featuring a bridging carbon-nitrogen bond that is found in numerous discorhabdins, including discorhabdin V. Herein we report the first total synthesis and full stereochemical assignment of (+)-discorhabdin V. To access the pyrroloiminoquinone we developed a convergent N-alkylation/oxidative aminocyclization/bromination cascade that joins two key components, which are both made on multigram scale. An intramolecular Heck reaction then forms the quaternary carbon center in an intermediate containing the carbon-nitrogen bridge, and a reductive N,O-acetal cyclization sequence introduces the final piperidine ring. Furthermore, we have established the relative configuration of (+)-discorhabdin V through experimental NOESY data and DP4 NMR probability calculations. The absolute configuration of the natural product has also been determined by circular dichroism and the use of an amino acid derived chiral starting material. Our work represents one of only two reports of a total synthesis of a nitrogen-bridged discorhabdin and paves the way for future biological evaluation of such compounds.

4.
J Am Chem Soc ; 145(10): 5631-5636, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36856576

RESUMEN

Cyclobutadiene is a highly reactive antiaromatic hydrocarbon that has fascinated chemists for over 60 years. However, its preparation and uses in chemical synthesis are sparing, in part due to its lengthy synthesis that generates hazardous byproducts including excess heavy metals. Herein, we report a scalable, metal-free cyclobutadiene reagent, diethyldiazabicyclohexene dicarboxylate, and explore its intermolecular [4 + 2] cycloaddition with various electron-deficient alkenes. We also demonstrate its utility in a three-step synthesis of dipiperamide G and a diverse array of product derivatizations including bromocyclobutadiene.

5.
J Am Chem Soc ; 144(39): 17797-17802, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36135802

RESUMEN

A longstanding challenge in fundamental functional group interconversion has been the direct transformation of benzene into pyridine via nitrogen insertion and carbon deletion. Herein, we report a protocol for the transformation of aryl azides, easily accessible from their corresponding anilines, to 2-aminopyridines using blue light and oxygen. Mechanistic studies corroborate that the arene to pyridine conversion is achieved by nitrogen insertion into the benzene ring followed by oxidative carbon extrusion.


Asunto(s)
Azidas , Benceno , Aminopiridinas , Compuestos de Anilina , Carbono , Nitrógeno , Oxígeno , Piridinas
6.
J Am Chem Soc ; 144(43): 19689-19694, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269089

RESUMEN

The Kochi-Salomon reaction is the only photochemical [2+2] cycloaddition capable of combining two electronically unactivated olefins into a cyclobutane. Yet, the reaction has remained largely unexplored and suffers many drawbacks, most notably an intolerance to Lewis/Brønsted basic amines and amides. Since these groups are ubiquitous in biologically active pharmaceuticals, an amine-tolerant Kochi-Salomon reaction would greatly facilitate rapid exploration of novel drug scaffolds. Herein, we disclose a transformation that is run in water with the most widely available Cu(II) salts and mineral acids. Furthermore, we apply this methodology to synthesize a variety of amine-containing cyclobutanes, including known and novel pharmacological analogues.


Asunto(s)
Alquenos , Ciclobutanos , Aminas , Catálisis , Estructura Molecular , Agua
7.
Proc Natl Acad Sci U S A ; 115(37): 9098-9103, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150407

RESUMEN

Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5-10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.


Asunto(s)
Bacterias/química , Permeabilidad de la Membrana Celular , Membrana Celular/química , Hidrazinas/química , Hidróxidos/química , Fosfolípidos/química , Protones , Anaerobiosis/fisiología , Bacterias/metabolismo , Membrana Celular/metabolismo , Hidrazinas/metabolismo , Hidróxidos/metabolismo , Fosfolípidos/metabolismo
8.
Angew Chem Int Ed Engl ; 60(32): 17491-17496, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33930240

RESUMEN

Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid parallel GDGT-0 and the synthesis and self-assembly of derivatives bearing different polar groups.


Asunto(s)
Éteres de Glicerilo/síntesis química , Lípidos de la Membrana/síntesis química , Archaea/química , Estereoisomerismo
9.
J Am Chem Soc ; 142(34): 14619-14626, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786795

RESUMEN

Pursuing polymers that can transform from a nonconjugated to a conjugated state under mechanical stress to significantly change their properties, we developed a new generation of ladder-type mechanophore monomers, bicyclo[2.2.0]hex-5-ene-peri-naphthalene (BCH-Naph), that can be directly and efficiently polymerized by ring-opening metathesis polymerization (ROMP). BCH-Naphs can be synthesized in multigram quantities and functionalized with a wide range of electron-rich and electron-poor substituents, allowing tuning of the optoelectronic and physical properties of mechanically generated conjugated polymers. Efficient ROMP of BCH-Naphs yielded ultrahigh molecular weight polymechanophores with controlled MWs and low dispersity. The resulting poly(BCH-Naph)s can be mechanically activated into conjugated polymers using ultrasonication, grinding, and even simple stirring of the dilute solutions, leading to changes in absorption and fluorescence. Poly(BCH-Naph)s represent an attractive polymechanophore system to explore multifaceted mechanical response in solution and solid states, owing to the synthetic scalability, functional diversity, efficient polymerization, and facile mechanoactivation.

10.
J Am Chem Soc ; 141(7): 2867-2871, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30707836

RESUMEN

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of natural-product-relevant chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


Asunto(s)
Terpenos/síntesis química , Benzoquinonas/química , Ácidos Borónicos/química , Reacción de Cicloadición , Oxidación-Reducción , Estereoisomerismo
11.
Acc Chem Res ; 51(5): 1260-1271, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29664281

RESUMEN

To date, more than 5000 biogenic halogenated molecules have been characterized. This number continues to increase as chemists explore chloride- and bromide-rich marine environments in search of novel bioactive natural products. Naturally occurring organohalogens span nearly all biosynthetic structural classes, exhibit a range of unique biological activities, and have been the subject of numerous investigations. Despite the abundance of and interest in halogenated molecules, enantioselective methods capable of forging carbon-halogen bonds in synthetically relevant contexts remain scarce. Accordingly, syntheses of organohalogens often rely on multistep functional group interconversions to establish carbon-halogen stereocenters. Our group has developed an enantioselective dihalogenation reaction and utilized it in the only reported examples of catalytic enantioselective halogenation in natural product synthesis. In this Account, we describe our laboratory's development of a method for catalytic, enantioselective dihalogenation and the application of this method to the synthesis of both mono- and polyhalogenated natural products. In the first part, we describe the initial discovery of a TADDOL-mediated dibromination of cinnamyl alcohols. Extension of this reaction to a second-generation system capable of selective bromochlorination, dichlorination, and dibromination is then detailed. This system is capable of controlling the enantioselectivity of dihalide formation, chemoselectivity for polyolefinic substrates, and regioselectivity in the case of bromochlorination. The ability of this method to exert control over regioselectivity of halide delivery permits selective halogenation of electronically nonbiased olefins required for total synthesis. In the second part, we demonstrate how the described dihalogenation has provided efficient access to a host of structurally diverse natural products. The most direct application of this methodology is in the synthesis of naturally occurring vicinal dihalides. Chiral vicinal bromochlorides represent a class of >175 natural products; syntheses of five members of this class, including its flagship member, (+)-halomon, have been accomplished through use of the catalytic, enantioselective bromochlorination. Likewise, enantioselective dichlorination has provided selective access to two members of the chlorosulfolipids, a class of linear, acyclic polychlorides. Synthesis of chiral monohalides has been achieved through solvolysis of enantioenriched bromochlorides; this approach has resulted in the synthesis of five bromocyclohexane-containing natural products through an enantiospecific bromopolyene cyclization. In reviewing these syntheses, a framework for the synthesis of chiral organohalogens mediated by catalytic, enantioselective dihalogenation has emerged. The development of a selective dihalogenation method has been highly enabling in the synthesis of halogenated natural products. In this Account, we detail all examples of catalytic, enantioselective halogenation in total synthesis and encourage the further development of synthetically useful halogenation methodologies.


Asunto(s)
Productos Biológicos/síntesis química , Hidrocarburos Bromados/síntesis química , Hidrocarburos Clorados/síntesis química , Catálisis , Halogenación , Estereoisomerismo
12.
Tetrahedron ; 75(24): 3366-3370, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31889735

RESUMEN

Pyrroloiminoquinone alkaloids represent a structurally intriguing class of natural products that display an array of useful biological properties. Here, we present a versatile and scalable platform for the synthesis of this diverse family - and in particular the antitumor discorhabdins - built upon sequential selective C-H functionalization of tryptamine. The utility of this strategy is showcased through short formal syntheses of damirones A-C, makaluvamines D and I, and discorhadbin E. Additionally, we describe efforts to develop the first catalytic asymmetric entry to the discorhabdin subclass.

13.
J Am Chem Soc ; 140(46): 15646-15650, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30403852

RESUMEN

Herein we report a highly regio- and stereoselective haloazidation of allylic alcohols. This enantioselective reaction uses readily available materials and can be performed on a variety of alkyl-substituted alkenes and can incorporate either bromine or chlorine as the electrophilic halogen component. Both halide and azido groups of the resulting products can be transformed into valuable building blocks with complete stereospecificity. The first example of an enantioselective 1,4-haloazidation of a conjugated diene is reported as well as its application to a concise synthesis of an aza-sugar.


Asunto(s)
Azidas/química , Propanoles/química , Compuestos Aza/síntesis química , Compuestos Aza/química , Catálisis , Halogenación , Estructura Molecular , Estereoisomerismo
14.
J Am Chem Soc ; 140(39): 12388-12391, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30229652

RESUMEN

We have recently reported a polymechanophore system, polyladderene (PLDE), which dramatically transforms into polyacetylene (PA) upon mechanical stimulation. Herein, we optimized conditions to synthesize unprecedented block copolymers (BCPs) containing a force-responsive block by sequential ring-opening metathesis polymerization of different norbornenes and bromoladderene. Successful extension from PLDE to other blocks required careful timing and low temperatures to preserve the reactivity of the PLDE-appended catalyst. The PLDE-containing BCPs were sonochemically activated into visually soluble PA with a maximum absorption λ ≥ 600 nm and unique absorption patterns corresponding to noncontinuous activation of ladderene units. Access to polymechanophore BCPs paves the way for new stress-responsive materials with solution and solid state self-assembly behaviors and incorporation of polymechanophores into other materials.

15.
J Am Chem Soc ; 139(38): 13562-13569, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28858493

RESUMEN

Herein, we report that under mild solvolytic conditions, enantioenriched bromochlorides can be ionized, stereospecifically cyclized to an array of complex bromocyclic scaffolds, or intermolecularly trapped by exogenous nucleophiles. Mechanistic investigations support an ionic mechanism wherein the bromochloride serves as an enantioenriched bromonium surrogate. Several natural product-relevant motifs are accessed in enantioenriched form for the first time with high levels of stereocontrol, and this technology is applied to the scalable synthesis of a polycyclic brominated natural product. Arrays of nucleophiles including olefins, alkynes, heterocycles, and epoxides are competent traps in the bromonium-induced cyclizations, leading to the formation of enantioenriched mono-, bi-, and tricyclic products. This strategy is further amenable to intermolecular coupling between cinnamyl bromochlorides and a diverse set of commercially available nucleophiles. Collectively, this work demonstrates that enantioenriched bromonium chlorides are configurationally stable under solvolytic conditions in the presence of a variety of functional groups.


Asunto(s)
Compuestos de Bromina/química , Cloruros/química , Solventes/química , Ácidos Heterocíclicos/química , Alquenos/química , Alquinos/química , Productos Biológicos/química , Ciclización , Compuestos Epoxi/química , Iones
16.
J Am Chem Soc ; 138(15): 5150-8, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27018981

RESUMEN

A titanium-based catalytic enantioselective dichlorination of simple allylic alcohols is described. This dichlorination reaction provides stereoselective access to all common dichloroalcohol building blocks used in syntheses of chlorosulfolipid natural products. An enantioselective synthesis of ent-(-)-deschloromytilipin A and a concise, eight-step synthesis of ent-(-)-danicalipin A are executed and employ the dichlorination reaction as the first step. Extension of this system to enantioselective dibromination and its use in the synthesis of pentabromide stereoarrays relevant to bromosulfolipids is reported. The described dichlorination and dibromination reactions are capable of exerting diastereocontrol in complex settings allowing X-ray crystal structure analysis of natural and unnatural diastereomers of polyhalogenated stereohexads.


Asunto(s)
Hidrocarburos Clorados/síntesis química , Lípidos/síntesis química , Catálisis , Estereoisomerismo , Titanio/química
17.
J Am Chem Soc ; 138(49): 15845-15848, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960308

RESUMEN

Ladderane lipids produced by anammox bacteria constitute some of the most structurally fascinating yet poorly studied molecules among biological membrane lipids. Slow growth of the producing organism and the inherent difficulty of purifying complex lipid mixtures have prohibited isolation of useful amounts of natural ladderane lipids. We have devised a highly selective total synthesis of ladderane lipid tails and a full phosphatidylcholine to enable biophysical studies on chemically homogeneous samples of these molecules. Additionally, we report the first proof of absolute configuration of a natural ladderane.


Asunto(s)
Fosfolípidos/síntesis química , Conformación Molecular , Fosfolípidos/química
18.
Mar Drugs ; 14(11)2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27827902

RESUMEN

While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.


Asunto(s)
Halogenación , Hidrocarburos Halogenados/química , Animales , Productos Biológicos , Humanos , Hidrocarburos Halogenados/farmacología , Conformación Molecular , Estructura Molecular , Estereoisomerismo
19.
Angew Chem Int Ed Engl ; 55(38): 11476-9, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27506430

RESUMEN

The brominated chamigrene sesquiterpenes constitute a large subclass of bromocyclohexane-containing natural products, yet no general enantioselective strategy for the synthesis of these small molecules exists. Herein we report a general strategy for accessing this family of secondary metabolites, including the enantioselective synthesis of (-)-α- and (-)-ent-ß-bromochamigrene, (-)-dactylone, and (+)-aplydactone. Access to these molecules is enabled by a stereospecific bromopolyene cyclization initiated by the solvolysis of an enantiomerically enriched vicinal bromochloride.


Asunto(s)
Sesquiterpenos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Cristalografía por Rayos X , Reacción de Cicloadición , Halogenación , Conformación Molecular , Sesquiterpenos/síntesis química , Estereoisomerismo
20.
Beilstein J Org Chem ; 12: 1361-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27559385

RESUMEN

The scope of a recently reported method for the catalytic enantioselective bromochlorination of allylic alcohols is expanded to include a specific homoallylic alcohol. Critical factors for optimization of this reaction are highlighted. The utility of the product bromochloride is demonstrated by the first total synthesis of an antibacterial polyhalogenated monoterpene, (-)-anverene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA