Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Genomics ; 293(6): 1477-1491, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30069598

RESUMEN

KEY MESSAGE: QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits. SNPs from RNASeq data distinguishing two parents, A. duranensis (KSSc38901) and A. cardenasii (GKP10017), of a mapping population were identified using three references-A. duranensis V14167 genome sequence, and transcriptome sequences of A. duranensis KSSc38901 and OLin. More than 49,000 SNPs differentiated the parents, and 87.9% of the 190 SNP calls tested were validated. SNPs were then genotyped on 91 F2 lines using KASP chemistry on a Roche LightCycler 480 and a Fluidigm Biomark HD, and using SNPType chemistry on the Fluidigm Biomark HD. A linkage map was constructed having ten linkage groups, with 144 loci spanning a total map distance of 1040 cM. Comparison of the A-genome map to the A. duranensis genome sequence revealed a high degree of synteny. QTL analysis was also performed on the mapping population for important architectural traits. Fifteen definitive and 16 putative QTLs for petiole length, leaflet length and width, leaflet area, leaflet length/width ratio, main stem height, presence of flowers on the main stem, and seed mass were identified. Results demonstrate that SNPs identified from transcriptome sequencing could be converted to KASP or SNPType markers with a high success rate, and used to identify alleles with significant phenotypic effects, These could serve as information useful for introgression of alleles into cultivated peanut from wild species and have the potential to allow breeders to more easily fix these alleles using a marker-assisted backcrossing approach.


Asunto(s)
Arachis/anatomía & histología , Arachis/genética , Genoma de Planta , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Arachis/clasificación , Arachis/crecimiento & desarrollo , Mapeo Cromosómico , Domesticación , Evolución Molecular , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fenotipo , Especificidad de la Especie
2.
Mol Genet Genomics ; 290(3): 1169-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25663138

RESUMEN

Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.


Asunto(s)
Arachis/genética , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética , Transcriptoma , Arachis/clasificación , Secuencia de Bases , Ligamiento Genético , Marcadores Genéticos/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , ARN de Planta/química , ARN de Planta/aislamiento & purificación , Análisis de Secuencia de ADN , Sudoeste de Estados Unidos , Tetraploidía
3.
Front Plant Sci ; 14: 1299371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164249

RESUMEN

At the cellular level, membrane damage is a fundamental cause of yield loss at high temperatures (HT). We report our investigations on a subset of a peanut (Arachis hypogaea) recombinant inbred line population, demonstrating that the membrane lipid remodeling occurring at HT is consistent with homeoviscous adaptation to maintain membrane fluidity. A major alteration in the leaf lipidome at HT was the reduction in the unsaturation levels, primarily through reductions of 18:3 fatty acid chains, of the plastidic and extra-plastidic diacyl membrane lipids. In contrast, levels of 18:3-containing triacylglycerols (TGs) increased at HT, consistent with a role for TGs in sequestering fatty acids when membrane lipids undergo remodeling during plant stress. Polyunsaturated acyl chains from membrane diacyl lipids were also sequestered as sterol esters (SEs). The removal of 18:3 chains from the membrane lipids decreased the availability of susceptible molecules for oxidation, thereby minimizing oxidative damage in membranes. Our results suggest that transferring 18:3 chains from membrane diacyl lipids to TGs and SEs is a key feature of lipid remodeling for HT adaptation in peanut. Finally, QTL-seq allowed the identification of a genomic region associated with heat-adaptive lipid remodeling, which would be useful for identifying molecular markers for heat tolerance.

4.
Front Plant Sci ; 13: 1076744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684745

RESUMEN

Early leaf spot (ELS) and late leaf spot (LLS) diseases are the two most destructive groundnut diseases in Ghana resulting in ≤ 70% yield losses which is controlled largely by chemical method. To develop leaf spot resistant varieties, the present study was undertaken to identify single nucleotide polymorphism (SNP) markers and putative candidate genes underlying both ELS and LLS. In this study, six multi-locus models of genome-wide association study were conducted with the best linear unbiased predictor obtained from 294 African groundnut germplasm screened for ELS and LLS as well as image-based indices of leaf spot diseases severity in 2020 and 2021 and 8,772 high-quality SNPs from a 48 K SNP array Axiom platform. Ninety-seven SNPs associated with ELS, LLS and five image-based indices across the chromosomes in the 2 two sub-genomes. From these, twenty-nine unique SNPs were detected by at least two models for one or more traits across 16 chromosomes with explained phenotypic variation ranging from 0.01 - 62.76%, with exception of chromosome (Chr) 08 (Chr08), Chr10, Chr11, and Chr19. Seventeen potential candidate genes were predicted at ± 300 kbp of the stable/prominent SNP positions (12 and 5, down- and upstream, respectively). The results from this study provide a basis for understanding the genetic architecture of ELS and LLS diseases in African groundnut germplasm, and the associated SNPs and predicted candidate genes would be valuable for breeding leaf spot diseases resistant varieties upon further validation.

5.
Plant Cell Physiol ; 52(11): 1904-14, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21920877

RESUMEN

Isopentenyltransferase (IPT) is a critical enzyme in the cytokinin biosynthetic pathway. The expression of IPT under the control of a maturation- and stress-induced promoter was shown to delay stress-induced plant senescence that resulted in an enhanced drought tolerance in both monocot and dicot plants. This report extends the earlier findings in tobacco and rice to peanut (Arachis hypogaea L.), an important oil crop and protein source. Regulated expression of IPT in peanut significantly improved drought tolerance in both laboratory and field conditions. Transgenic peanut plants maintained higher photosynthetic rates, higher stomatal conductance and higher transpiration than wild-type control plants under reduced irrigation conditions. More importantly, transgenic peanut plants produced significantly higher yields than wild-type control plants in the field, indicating a great potential for the development of crops with improved performance and yield in water-limited areas of the world.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Arachis/genética , Citocininas/metabolismo , Sequías , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Arachis/enzimología , Arachis/crecimiento & desarrollo , Biomasa , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Transpiración de Plantas , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
6.
Genetica ; 139(4): 411-29, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21442404

RESUMEN

Knowledge of genetic diversity, population structure, and degree of linkage disequilibrium (LD) in target association mapping populations is of great importance and is a prerequisite for LD-based mapping. In the present study, 96 genotypes comprising 92 accessions of the US peanut minicore collection, a component line of the tetraploid variety Florunner, diploid progenitors A. duranensis (AA) and A. ipaënsis (BB), and synthetic amphidiploid accession TxAG-6 were investigated with 392 simple sequence repeat (SSR) marker bands amplified using 32 highly-polymorphic SSR primer pairs. Both distance- and model-based (Bayesian) cluster analysis revealed the presence of structured diversity. In general, the wild-species accessions and the synthetic amphidiploid grouped separately from most minicore accessions except for COC155, and were eliminated from most subsequent analyses. UPGMA analysis divided the population into four subgroups, two major subgroups representing subspecies fastigiata and hypogaea, a third group containing individuals from each subspecies or possibly of mixed ancestry, and a fourth group, either consisting of COC155 alone if wild species were excluded, or of COC155, the diploid species, and the synthetic amphidiploid. Model-based clustering identified four subgroups- one each for fastigiata and hypogaea subspecies, a third consisting of individuals of both subspecies or of mixed ancestry predominantly from Africa or Asia, and a fourth group, consisting of individuals predominantly of var fastigiata, peruviana, and aequatoriana accessions from South America, including COC155. Analysis of molecular variance (AMOVA) revealed statistically-significant (P < 0.0001) genetic variance of 16.87% among subgroups. A total of 4.85% of SSR marker pairs revealed significant LD (at r(2) ≥ 0.1). Of the syntenic marker pairs separated by distances < 10 cM, 11-20 cM, 21-50 cM, and > 50 cM, 19.33, 5.19, 6.25 and 5.29% of marker pairs were found in strong LD (P ≤ 0.01), in accord with LD extending to great distances in self pollinated crops. A threshold value of r(2) > 0.035 was found to distinguish mean r(2) values of linkage distance groups statistically from the mean r(2) values of unlinked markers; LD was found to extend to 10 cM over the entire minicore collection by this criterion. However, there were large differences in r(2) values among marker pairs even among tightly-linked markers. The implications of these findings with regard to the possibility of using association mapping for detection of genome-wide SSR marker-phenotype association are discussed.


Asunto(s)
Arachis/genética , Variación Genética/genética , Desequilibrio de Ligamiento/genética , Arachis/clasificación , Teorema de Bayes , Análisis por Conglomerados , Genoma de Planta , Genotipo , Filogenia , Polimorfismo Genético , Secuencias Repetidas en Tándem/genética
7.
Plant Direct ; 5(8): e342, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34458666

RESUMEN

Water deficit and salinity are two major abiotic stresses that have tremendous effect on crop yield worldwide. Timely identification of these stresses can help limit associated yield loss. Confirmatory detection and identification of water deficit stress can also enable proper irrigation management. Traditionally, unmanned aerial vehicle (UAV)-based imaging and satellite-based imaging, together with visual field observation, are used for diagnostics of such stresses. However, these approaches can only detect salinity and water deficit stress at the symptomatic stage. Raman spectroscopy (RS) is a noninvasive and nondestructive technique that can identify and detect plant biotic and abiotic stress. In this study, we investigated accuracy of Raman-based diagnostics of water deficit and salinity stresses on two greenhouse-grown peanut accessions: tolerant and susceptible to water deficit. Plants were grown for 76 days prior to application of the water deficit and salinity stresses. Water deficit treatments received no irrigation for 5 days, and salinity treatments received 1.0 L of 240-mM salt water per day for the duration of 5-day sampling. Every day after the stress was imposed, plant leaves were collected and immediately analyzed by a hand-held Raman spectrometer. RS and chemometrics could identify control and stressed (either water deficit or salinity) susceptible plants with 95% and 80% accuracy just 1 day after treatment. Water deficit and salinity stressed plants could be differentiated from each other with 87% and 86% accuracy, respectively. In the tolerant accessions at the same timepoint, the identification accuracies were 66%, 65%, 67%, and 69% for control, combined stresses, water deficit, and salinity stresses, respectively. The high selectivity and specificity for presymptomatic identification of abiotic stresses in the susceptible line provide evidence for the potential of Raman-based surveillance in commercial-scale agriculture and digital farming.

8.
Plants (Basel) ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926071

RESUMEN

Early and late leaf spot are two devastating diseases of peanut (Arachis hypogaea L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([A. batizocoi × (A. cardenasii × A. diogoi)]4x), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars. Twenty-seven interspecific lines selected from prior evaluation of an advanced backcross population were evaluated for resistance to early and late leaf spot, and for yield in two locations in Ghana in 2006 and 2007. Several interspecific lines had early leaf spot scores significantly lower than the susceptible parent, indicating that resistance to leaf spot had been successfully introgressed and retained after three cycles of backcrossing. Time to appearance of early leaf spot symptoms was less in the introgression lines than in susceptible check cultivars, but the opposite was true for late leaf spot. Selected lines from families 43-08, 43-09, 50-04, and 60-02 had significantly reduced leaf spot scores, while lines from families 43-09, 44-10, and 63-06 had high pod yields. One line combined both resistance to leaf spot and high pod yield, and several other useful lines were also identified. Results suggest that it is possible to break linkage drag for low yield that accompanies resistance. However, results also suggest that resistance was diluted in many of the breeding lines, likely a result of the multigenic nature of resistance. Future QTL analysis may be useful to identify alleles for resistance and allow recombination and pyramiding of resistance alleles while reducing linkage drag.

9.
Front Plant Sci ; 12: 664243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058940

RESUMEN

Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using visual characterization or laboratory analysis requires substantial expertise, time, and resources. A less subjective and more precise method is needed for identification of peanut germplasm throughout the value chain. In this proof-of-principle study, the accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in peanut phenotyping and identification is explored. We show that RS can be used for highly accurate peanut phenotyping via surface scans of peanut leaves and the resulting chemometric analysis: On average 94% accuracy in identification of peanut cultivars and breeding lines was achieved. Our results also suggest that RS can be used for highly accurate determination of nematode resistance and susceptibility of those breeding lines and cultivars. Specifically, nematode-resistant peanut cultivars can be identified with 92% accuracy, whereas susceptible breeding lines were identified with 81% accuracy. Finally, RS revealed substantial differences in biochemical composition between resistant and susceptible peanut cultivars. We found that resistant cultivars exhibit substantially higher carotenoid content compared to the susceptible breeding lines. The results of this study show that RS can be used for quick, accurate, and non-invasive identification of genotype, nematode resistance, and nutrient content. Armed with this knowledge, the peanut industry can utilize Raman spectroscopy for expedited breeding to increase yields, nutrition, and maintaining purity levels of cultivars following release.

10.
J Fungi (Basel) ; 7(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34946983

RESUMEN

Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.

11.
Genes (Basel) ; 11(10)2020 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080972

RESUMEN

The use of molecular markers in plant breeding has become a routine practice, but the cost per accession can be a hindrance to the routine use of Quantitative Trait Loci (QTL) identification in breeding programs. In this study, we demonstrate the use of targeted re-sequencing as a proof of concept of a cost-effective approach to retrieve highly informative allele information, as well as develop a bioinformatics strategy to capture the genome-specific information of a polyploid species. SNPs were identified from alignment of raw transcriptome reads (2 × 50 bp) to a synthetic tetraploid genome using BWA followed by a GATK pipeline. Regions containing high polymorphic SNPs in both A genome and B genomes were selected as targets for the resequencing study. Targets were amplified using multiplex PCR followed by sequencing on an Illumina HiSeq. Eighty-one percent of the SNP calls in diploids and 68% of the SNP calls in tetraploids were confirmed. These results were also confirmed by KASP validation. Based on this study, we find that targeted resequencing technologies have potential for obtaining maximum allele information in allopolyploids at reduced cost.


Asunto(s)
Arachis/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tetraploidía , Alelos , Biología Computacional , Fitomejoramiento
12.
Sci Rep ; 10(1): 7730, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382086

RESUMEN

Identification of specific genotypes can be accomplished by visual recognition of their distinct phenotypical appearance, as well as DNA analysis. Visual identification (ID) of species is subjective and usually requires substantial taxonomic expertise. Genotyping and sequencing are destructive, time- and labor-consuming. In this study, we investigate the potential use of Raman spectroscopy (RS) as a label-free, non-invasive and non-destructive analytical technique for the fast and accurate identification of peanut genotypes. We show that chemometric analysis of peanut leaflet spectra provides accurate identification of different varieties. This same analysis can be used for prediction of nematode resistance and oleic-linoleic oil (O/L) ratio. Raman-based analysis of seeds provides accurate genotype identification in 95% of samples. Additionally, we present data on the identification of carbohydrates, proteins, fiber and other nutrients obtained from spectroscopic signatures of peanut seeds. These results demonstrate that RS allows for fast, accurate and non-invasive screening and selection of plants which can be used for precision breeding.


Asunto(s)
Arachis/genética , Ácido Linoleico/genética , Ácido Oléico/genética , Semillas/genética , Arachis/clasificación , Cruzamiento , Ácido Graso Desaturasas/genética , Genotipo , Fenotipo , Semillas/crecimiento & desarrollo , Espectrometría Raman
13.
BMC Genomics ; 10: 265, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19523230

RESUMEN

BACKGROUND: Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. RESULTS: We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. CONCLUSION: The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.


Asunto(s)
Arachis/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Genes de Plantas , Genoma de Planta , ARN de Planta/genética
14.
Plant Cell Environ ; 32(4): 380-407, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19143990

RESUMEN

Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis. Forty-nine non-redundant proteins were identified, implicating a variety of stress response mechanisms in peanut. Lipoxygenase and 1l-myo-inositol-1-phosphate synthase, which aid in inter- and intracellular stress signalling, were more abundant in tolerant genotypes under water-deficit stress. Acetyl-CoA carboxylase, a key enzyme of lipid biosynthesis, increased in relative abundance along with a corresponding increase in epicuticular wax content in the tolerant genotype, suggesting an additional mechanism for water conservation and stress tolerance. Additionally, there was a marked decrease in the abundance of several photosynthetic proteins in the tolerant genotype, along with a concomitant decrease in net photosynthesis in response to water-deficit stress. Differential regulation of leaf proteins involved in a variety of cellular functions (e.g. cell wall strengthening, signal transduction, energy metabolism, cellular detoxification and gene regulation) indicates that these molecules could affect the molecular mechanism of water-deficit stress tolerance in peanut.


Asunto(s)
Arachis/fisiología , Proteoma/metabolismo , Proteómica , Agua/fisiología , Acetil-CoA Carboxilasa/metabolismo , Arachis/genética , Arachis/metabolismo , Clorofila/análisis , Deshidratación , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Genotipo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Transpiración de Plantas , Proteoma/genética , ARN de Planta/genética , Estrés Fisiológico , Espectrometría de Masas en Tándem
15.
Mol Plant ; 10(2): 309-322, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-27993622

RESUMEN

Peanut (Arachis hypogaea; 2n = 4x = 40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. To facilitate high-throughput genotyping of Arachis species, 20 genotypes were re-sequenced and genome-wide single nucleotide polymorphisms (SNPs) were selected to develop a large-scale SNP genotyping array. For flexibility in genotyping applications, SNPs polymorphic between tetraploid and diploid species were included for use in cultivated and interspecific populations. A set of 384 accessions was used to test the array resulting in 54 564 markers that produced high-quality polymorphic clusters between diploid species, 47 116 polymorphic markers between cultivated and interspecific hybrids, and 15 897 polymorphic markers within A. hypogaea germplasm. An additional 1193 markers were identified that illuminated genomic regions exhibiting tetrasomic recombination. Furthermore, a set of elite cultivars that make up the pedigree of US runner germplasm were genotyped and used to identify genomic regions that have undergone positive selection. These observations provide key insights on the inclusion of new genetic diversity in cultivated peanut and will inform the development of high-resolution mapping populations. Due to its efficiency, scope, and flexibility, the newly developed SNP array will be very useful for further genetic and breeding applications in Arachis.


Asunto(s)
Arachis/genética , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Recombinación Genética , Tetrasomía , Marcadores Genéticos , Variación Genética , Genotipo , Haplotipos , Selección Genética
16.
BMC Bioinformatics ; 7: 375, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16904007

RESUMEN

BACKGROUND: Molecular maps have been developed for many species, and are of particular importance for varietal development and comparative genomics. However, despite the existence of multiple sets of linkage maps, databases of these data are lacking for many species, including peanut. DESCRIPTION: PeanutMap http://peanutgenetics.tamu.edu/cmap provides a web-based interface for viewing specific linkage groups of a map set. PeanutMap can display and compare multiple maps of a set based upon marker or trait correspondences, which is particularly important as cultivated peanut is a disomic tetraploid. The database can also compare linkage groups among multiple map sets, allowing identification of corresponding linkage groups from results of different research projects. Data from the two published peanut genome map sets, and also from three maps sets of phenotypic traits are present in the database. Data from PeanutMap have been incorporated into the Legume Information System website http://www.comparative-legumes.org to allow peanut map data to be used for cross-species comparisons. CONCLUSION: The utility of the database is expected to increase as several SSR-based maps are being developed currently, and expanded efforts for comparative mapping of legumes are underway. Optimal use of these data will benefit from the development of tools to facilitate comparative analysis.


Asunto(s)
Arachis/genética , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Internet , Mapeo Cromosómico , Biología Computacional/métodos , Ligamiento Genético , Repeticiones de Microsatélite/genética , Interfaz Usuario-Computador
17.
G3 (Bethesda) ; 6(12): 3825-3836, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27729436

RESUMEN

To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.


Asunto(s)
Arachis/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Alelos , Mapeo Cromosómico , Biología Computacional/métodos , Evolución Molecular , Genética de Población , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
18.
Nat Genet ; 48(4): 438-46, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901068

RESUMEN

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Asunto(s)
Arachis/genética , Genoma de Planta , Cromosomas de las Plantas/genética , Metilación de ADN , Elementos Transponibles de ADN , Evolución Molecular , Ligamiento Genético , Anotación de Secuencia Molecular , Ploidias , Análisis de Secuencia de ADN , Sintenía
19.
PLoS One ; 9(12): e115055, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551607

RESUMEN

The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751 bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278-1641 bp in Arachis hypogaea (AABB), 1401-1492 bp in Arachis duranensis (AA), and 1107-1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2 × 50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.


Asunto(s)
Arachis/genética , Diploidia , Perfilación de la Expresión Génica/métodos , Poliploidía , Análisis de Secuencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Bioresour Technol ; 154: 336-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413451

RESUMEN

Nitzschia sp. (Bacillariophyceae) was grown under temperature and photoperiods mimicking those, typical during summer, spring/fall and winter conditions in the southern United States, and using five silicate (Si) concentrations. In general, higher Si concentrations resulted in higher growth rates in summer and spring/fall conditions and lower organic content. Si-deficient Nitzschia sp. had higher levels of neutral lipid compared to those growing in Si replete media. Under summer conditions, the proportion of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) was relatively stable compared with spring/fall and winter conditions, and the proportion of polyunsaturated fatty acids (PUFA) was low. In the winter condition, SFA and MUFA showed a gradient of decreasing abundance while PUFA gradients increased with increasing Si concentrations in the medium. Cumulative productivity (optimization of growth and lipid content) would be best in the spring/fall but less so in the other conditions for this strain of Nitzschia sp.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Silicatos/farmacología , Temperatura , Análisis de Varianza , Biomasa , Carbono/análisis , Diatomeas/efectos de los fármacos , Ácidos Grasos/metabolismo , Fluorescencia , Nitrógeno/análisis , Oxazinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA