Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Allergy ; 79(7): 1844-1857, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38798015

RESUMEN

BACKGROUND: The rise in asthma has been linked to different environmental and lifestyle factors including dietary habits. Whether dietary salt contributes to asthma incidence, remains controversial. We aimed to investigate the impact of higher salt intake on asthma incidence in humans and to evaluate underlying mechanisms using mouse models. METHODS: Epidemiological research was conducted using the UK Biobank Resource. Data were obtained from 42,976 participants with a history of allergies. 24-h sodium excretion was estimated from spot urine, and its association with asthma incidence was assessed by Cox regression, adjusting for relevant covariates. For mechanistic studies, a mouse model of mite-induced allergic airway inflammation (AAI) fed with high-salt diet (HSD) or normal-salt chow was used to characterize disease development. The microbiome of lung and feces (as proxy for gut) was analyzed via 16S rRNA gene based metabarcoding approach. RESULTS: In humans, urinary sodium excretion was directly associated with asthma incidence among females but not among males. HSD-fed female mice displayed an aggravated AAI characterized by increased levels of total IgE, a TH2-TH17-biased inflammatory cell infiltration accompanied by upregulation of osmosensitive stress genes. HSD induced distinct changes in serum short chain fatty acids and in both gut and lung microbiome, with a lower Bacteroidetes to Firmicutes ratio and decreased Lactobacillus relative abundance in the gut, and enriched members of Gammaproteobacteria in the lung. CONCLUSIONS: High dietary salt consumption correlates with asthma incidence in female adults with a history of allergies. Female mice revealed HSD-induced T-cell lung profiles accompanied by alterations of gut and lung microbiome.


Asunto(s)
Asma , Cloruro de Sodio Dietético , Animales , Asma/etiología , Asma/inmunología , Ratones , Humanos , Femenino , Masculino , Cloruro de Sodio Dietético/efectos adversos , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microbioma Gastrointestinal , Adulto , Persona de Mediana Edad , Microbiota , Incidencia
2.
Circulation ; 142(13): 1261-1278, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32686471

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments of AF are suboptimal because they are not targeted to the molecular mechanisms underlying AF. Using a highly novel gene therapy approach in a canine, rapid atrial pacing model of AF, we demonstrate that NADPH oxidase 2 (NOX2) generated oxidative injury causes upregulation of a constitutively active form of acetylcholine-dependent K+ current (IKACh), called IKH; this is an important mechanism underlying not only the genesis, but also the perpetuation of electric remodeling in the intact, fibrillating atrium. METHODS: To understand the mechanism by which oxidative injury promotes the genesis and maintenance of AF, we performed targeted injection of NOX2 short hairpin RNA (followed by electroporation to facilitate gene delivery) in atria of healthy dogs followed by rapid atrial pacing. We used in vivo high-density electric mapping, isolation of atrial myocytes, whole-cell patch clamping, in vitro tachypacing of atrial myocytes, lucigenin chemiluminescence assay, immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and Masson trichrome staining. RESULTS: First, we demonstrate that generation of oxidative injury in atrial myocytes is a frequency-dependent process, with rapid pacing in canine atrial myocytes inducing oxidative injury through the induction of NOX2 and the generation of mitochondrial reactive oxygen species. We show that oxidative injury likely contributes to electric remodeling in AF by upregulating IKACh by a mechanism involving frequency-dependent activation of PKCε (protein kinase C epsilon). The time to onset of nonsustained AF increased by >5-fold in NOX2 short hairpin RNA-treated dogs. Furthermore, animals treated with NOX2 short hairpin RNA did not develop sustained AF for up to 12 weeks. The electrophysiological mechanism underlying AF prevention was prolongation of atrial effective refractory periods, at least in part attributable to the attenuation of IKACh. Attenuated membrane translocation of PKCε appeared to be a likely molecular mechanism underlying this beneficial electrophysiological remodeling. CONCLUSIONS: NOX2 oxidative injury (1) underlies the onset, and the maintenance of electric remodeling in AF, as well, and (2) can be successfully prevented with a novel, gene-based approach. Future optimization of this approach may lead to a novel, mechanism-guided therapy for AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Regulación Enzimológica de la Expresión Génica , Terapia Genética , NADPH Oxidasa 2 , ARN Interferente Pequeño , Animales , Fibrilación Atrial/enzimología , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Perros , Atrios Cardíacos/enzimología , Atrios Cardíacos/fisiopatología , NADPH Oxidasa 2/biosíntesis , NADPH Oxidasa 2/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 320(4): H1658-H1669, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33635163

RESUMEN

The goal of this work was to investigate the role of t-tubule (TT) remodeling in abnormal Ca2+ cycling in ventricular myocytes of failing dog hearts. Heart failure (HF) was induced using rapid right ventricular pacing. Extensive changes in echocardiographic parameters, including left and right ventricular dilation and systolic dysfunction, diastolic dysfunction, elevated left ventricular filling pressures, and abnormal cardiac mechanics, indicated that severe HF developed. TT loss was extensive when measured as the density of total cell volume, derived from three-dimensional confocal image analysis, and significantly increased the distances in the cell interior to closest cell membrane. Changes in Ca2+ transients indicated increases in heterogeneity of Ca2+ release along the cell length. When critical properties of Ca2+ release variability were plotted as a function of TT organization, there was a complex, nonlinear relationship between impaired calcium release and decreasing TT organization below a certain threshold of TT organization leading to increased sensitivity in Ca2+ release below a TT density threshold of 1.5%. The loss of TTs was also associated with a greater incidence of triggered Ca2+ waves during rapid pacing. Finally, virtually all of these observations were replicated by acute detubulation by formamide treatment, indicating an important role of TT remodeling in impaired Ca2+ cycling. We conclude that TT remodeling itself is a major contributor to abnormal Ca2+ cycling in HF, reducing myocardial performance. The loss of TTs is also responsible for a greater incidence of triggered Ca2+ waves that may play a role in ventricular arrhythmias arising in HF.NEW & NOTEWORTHY Three-dimensional analysis of t-tubule density showed t-tubule disruption throughout the whole myocyte in failing dog ventricle. A double-linear relationship between Ca2+ release and t-tubule density displays a steeper slope at t-tubule densities below a threshold value (∼1.5%) above which there is little effect on Ca2+ release (T-tubule reserve). T-tubule loss increases incidence of triggered Ca2+ waves. Chemically induced t-tubule disruption suggests that t-tubule loss alone is a critical component of abnormal Ca2+ cycling in heart failure.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Miocitos Cardíacos/patología , Función Ventricular Izquierda , Función Ventricular Derecha , Presión Ventricular
4.
Proc Natl Acad Sci U S A ; 108(50): 20225-30, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22135470

RESUMEN

Plant cell wall pectic polysaccharides are arguably the most complex carbohydrates in nature. Progress in understanding pectin synthesis has been slow due to its complex structure and difficulties in purifying and expressing the low-abundance, Golgi membrane-bound pectin biosynthetic enzymes. Arabidopsis galacturonosyltransferase (GAUT) 1 is an α-1,4-galacturonosyltransferase (GalAT) that synthesizes homogalacturonan (HG), the most abundant pectic polysaccharide. We now show that GAUT1 functions in a protein complex with the homologous GAUT7. Surprisingly, although both GAUT1 and GAUT7 are type II membrane proteins with single N-terminal transmembrane-spanning domains, the N-terminal region of GAUT1, including the transmembrane domain, is cleaved in vivo. This raises the question of how the processed GAUT1 is retained in the Golgi, the site of HG biosynthesis. We show that the anchoring of GAUT1 in the Golgi requires association with GAUT7 to form the GAUT1:GAUT7 complex. Proteomics analyses also identified 12 additional proteins that immunoprecipitate with the GAUT1:GAUT7 complex. This study provides conclusive evidence that the GAUT1:GAUT7 complex is the catalytic core of an HG:GalAT complex and that cell wall matrix polysaccharide biosynthesis occurs via protein complexes. The processing of GAUT1 to remove its N-terminal transmembrane domain and its anchoring in the Golgi by association with GAUT7 provides an example of how specific catalytic domains of plant cell wall biosynthetic glycosyltransferases could be assembled into protein complexes to enable the synthesis of the complex and developmentally and environmentally plastic plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Pared Celular/enzimología , Pectinas/metabolismo , Glucuronosiltransferasa , Aparato de Golgi/enzimología , Inmunoprecipitación , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteómica , Especificidad por Sustrato
5.
Sci Adv ; 10(43): eadr3567, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39441938

RESUMEN

Opioid overdose accounts for nearly 75,000 deaths per year in the United States, now a leading cause of mortality among young people aged 18 to 45 years. At overdose levels, opioid-induced respiratory depression becomes fatal without the administration of naloxone within minutes. Currently, overdose survival relies on bystander intervention, requiring a nearby person to find the overdosed individual and have immediate access to naloxone to administer. To circumvent the bystander requirement, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose while simultaneously contacting first responders. We present three Naloximeter platforms, for fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that can broadly benefit a susceptible population recovering from opioid use disorder.


Asunto(s)
Naloxona , Sobredosis de Opiáceos , Sobredosis de Opiáceos/mortalidad , Humanos , Animales , Analgésicos Opioides , Antagonistas de Narcóticos , Prótesis e Implantes , Sobredosis de Droga/mortalidad , Masculino
6.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005313

RESUMEN

Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.

7.
Genome Res ; 20(10): 1352-60, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20736230

RESUMEN

Initially thought to play a restricted role in calcium homeostasis, the pleiotropic actions of vitamin D in biology and their clinical significance are only now becoming apparent. However, the mode of action of vitamin D, through its cognate nuclear vitamin D receptor (VDR), and its contribution to diverse disorders, remain poorly understood. We determined VDR binding throughout the human genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After calcitriol stimulation, we identified 2776 genomic positions occupied by the VDR and 229 genes with significant changes in expression in response to vitamin D. VDR binding sites were significantly enriched near autoimmune and cancer associated genes identified from genome-wide association (GWA) studies. Notable genes with VDR binding included IRF8, associated with MS, and PTPN2 associated with Crohn's disease and T1D. Furthermore, a number of single nucleotide polymorphism associations from GWA were located directly within VDR binding intervals, for example, rs13385731 associated with SLE and rs947474 associated with T1D. We also observed significant enrichment of VDR intervals within regions of positive selection among individuals of Asian and European descent. ChIP-seq determination of transcription factor binding, in combination with GWA data, provides a powerful approach to further understanding the molecular bases of complex diseases.


Asunto(s)
Enfermedades Autoinmunes/genética , Inmunoprecipitación de Cromatina , Evolución Molecular , Estudio de Asociación del Genoma Completo , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Sitios de Unión , Enfermedad de Crohn/genética , Diabetes Mellitus Tipo 1/genética , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Esclerosis Múltiple/genética , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Análisis de Secuencia de ADN/métodos
8.
JACC Basic Transl Sci ; 8(1): 68-84, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777167

RESUMEN

Traditional anatomically guided ablation and attempts to perform electrogram-guided atrial fibrillation (AF) ablation (CFAE, DF, and FIRM) have not been shown to be sufficient treatment for persistent AF. Using biatrial high-density electrophysiologic mapping in a canine rapid atrial pacing model of AF, we systematically investigated the relationship of electrogram morphology recurrence (EMR) (Rec% and CLR) with established AF electrogram parameters and tissue characteristics. Rec% correlates with stability of rotational activity and with the spatial distribution of parasympathetic nerve fibers. These results have indicated that EMR may therefore be a viable therapeutic target in persistent AF.

9.
Interv Cardiol ; 18: e04, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614703

RESUMEN

Background: Angiographic and procedural characteristics stratified by frailty status are not known in older patients with non-ST elevation acute coronary syndrome (NSTEACS). We evaluated angiographic and procedural characteristics in older adults with NSTEACS by frailty category, as well as associations of baseline and residual SYNTAX scores with long-term outcomes. Methods: In this study, 271 NSTEACS patients aged ≥75 years underwent coronary angiography. Frailty was assessed using the Fried criteria. Angiographic analysis was performed using QAngio® XA Medis in a core laboratory. Major adverse cardiovascular events (MACE) consisted of all-cause mortality, MI, stroke or transient ischaemic attack, repeat unplanned revascularisation and significant bleeding. Results: Mean (±SD) patient age was 80.5 ± 4.9 years. Compared with robust patients, patients with frailty had more severe culprit lesion calcification (OR 5.40; 95% CI [1.75-16.8]; p=0.03). In addition, patients with frailty had a smaller mean improvement in culprit lesion stenosis after percutaneous coronary intervention (50.6%; 95% CI [45.7-55.6]) than robust patients (58.6%; 95% CI [53.5-63.7]; p=0.042). There was no association between frailty phenotype and completeness of revascularisation (OR 0.83; 95% CI [0.36-1.93]; p=0.67). A high baseline SYNTAX score (≥33) was associated with adjusted (age and sex) 5-year MACE (HR 1.40; 95% CI [1.08-1.81]; p=0.01), as was a high residual SYNTAX score (≥8; adjusted HR 1.22; 95% CI [1.00-1.49]; p=0.047). Conclusion: Frail adults presenting with NSTEACS have more severe culprit lesion calcification. Frail adults were just as likely as robust patients to receive complete revascularisation. Baseline and residual SYNTAX score were associated with MACE at 5 years.

10.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617386

RESUMEN

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Asunto(s)
Implantes Absorbibles , Estimulación Cardíaca Artificial , Marcapaso Artificial , Cuidados Posoperatorios , Tecnología Inalámbrica , Animales , Perros , Frecuencia Cardíaca , Humanos , Cuidados Posoperatorios/instrumentación , Ratas
11.
Nat Biotechnol ; 39(10): 1228-1238, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34183859

RESUMEN

Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer. This approach overcomes key disadvantages of traditional temporary pacing devices and may serve as the basis for the next generation of postoperative temporary pacing technology.


Asunto(s)
Implantes Absorbibles , Marcapaso Artificial , Animales , Bloqueo Atrioventricular/terapia , Modelos Animales de Enfermedad , Perros , Diseño de Equipo , Humanos , Ratones , Conejos , Ratas , Tecnología Inalámbrica
12.
Circ Arrhythm Electrophysiol ; 13(6): e008179, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32433891

RESUMEN

BACKGROUND: We have identified a novel form of abnormal Ca2+ wave activity in normal and failing dog atrial myocytes which occurs during the action potential (AP) and is absent during diastole. The goal of this study was to determine if triggered Ca2+ waves affect cellular electrophysiological properties. METHODS: Simultaneous recordings of intracellular Ca2+ and APs allowed measurements of maximum diastolic potential and AP duration during triggered calcium waves (TCWs) in isolated dog atrial myocytes. Computer simulations then explored electrophysiological behavior arising from TCWs at the tissue scale. RESULTS: At 3.3 to 5 Hz, TCWs occurred during the AP and often outlasted several AP cycles. Maximum diastolic potential was reduced, and AP duration was significantly prolonged during TCWs. All electrophysiological responses to TCWs were abolished by SEA0400 and ORM10103, indicating that Na-Ca exchange current caused depolarization. The time constant of recovery from inactivation of Ca2+ current was 40 to 70 ms in atrial myocytes (depending on holding potential) so this current could be responsible for AP activation during depolarization induced by TCWs. Modeling studies demonstrated that the characteristic properties of TCWs are potentially arrhythmogenic by promoting both conduction block and reentry arising from the depolarization induced by TCWs. CONCLUSIONS: Triggered Ca2+ waves activate inward NCX and dramatically reduce atrial maximum diastolic potential and prolong AP duration, establishing the substrate for reentry which could contribute to the initiation and maintenance of atrial arrhythmias.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Arritmias Cardíacas/fisiopatología , Simulación por Computador , Diástole , Perros , Femenino , Masculino , Modelos Cardiovasculares , Factores de Tiempo
13.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31503549

RESUMEN

Atrial fibrillation (AF) is the most common heart rhythm disorder and a major cause of stroke. Unfortunately, current therapies for AF are suboptimal, largely because the molecular mechanisms underlying AF are poorly understood. Since the autonomic nervous system is thought to increase vulnerability to AF, we used a rapid atrial pacing (RAP) canine model to investigate the anatomic and electrophysiological characteristics of autonomic remodeling in different regions of the left atrium. RAP led to marked hypertrophy of parent nerve bundles in the posterior left atrium (PLA), resulting in a global increase in parasympathetic and sympathetic innervation throughout the left atrium. Parasympathetic fibers were more heterogeneously distributed in the PLA when compared with other left atrial regions; this led to greater fractionation and disorganization of AF electrograms in the PLA. Computational modeling revealed that heterogeneously distributed parasympathetic activity exacerbates sympathetic substrate for wave break and reentry. We further discovered that levels of nerve growth factor (NGF) were greatest in the left atrial appendage (LAA), where AF was most organized. Preferential NGF release by the LAA - likely a direct function of frequency and regularity of atrial stimulation - may have important implications for creation of a vulnerable AF substrate.


Asunto(s)
Apéndice Atrial/inervación , Fibrilación Atrial/fisiopatología , Remodelación Atrial , Factor de Crecimiento Nervioso/metabolismo , Sistema Nervioso Parasimpático/fisiopatología , Animales , Apéndice Atrial/citología , Apéndice Atrial/patología , Apéndice Atrial/fisiopatología , Fibrilación Atrial/patología , Modelos Animales de Enfermedad , Perros , Humanos , Miocitos Cardíacos/metabolismo
15.
Interact Cardiovasc Thorac Surg ; 17(6): 991-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23966576

RESUMEN

A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'Does tranexamic acid stop haemoptysis'? Altogether 49 papers were found using the reported search strategy, of which 13 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. This consisted of one systematic review including a meta-analysis of two double-blind randomized controlled trials (RCTs), the two RCTs, one cohort study, two case-series and seven case reports. Main outcomes included bleeding time, bleeding volume and occurrence of thromboembolic complications after start of treatment. Based on results from the meta-analysis, no difference in remission of bleeding within 1 week was found between tranexamic acid (TA) and placebo groups (odds ratio 1.56, 95% CI: 0.44-5.46). However, overall bleeding time was significantly shorter for the TA group (weighted mean difference -19.47, 95% CI: -26.90, -12.03 h). In one RCT, TA reduced both the duration and the volume of bleeding compared with patients receiving placebo (both P < 0.0005). However, the other RCT failed to find a difference in bleeding time (P = 0.2). In these studies, no patient suffered from thromboembolic complications. Two case reports, however, describe development of pulmonary embolism during TA treatment. Several case reports on the use of TA for treatment of haemoptysis secondary to cystic fibrosis were found. In general, they suggest that TA may be a useful and well-tolerated medication for the treatment of intractable haemoptysis in this patient group. We conclude that limited research on the use of TA for treatment of haemoptysis exists. As aetiology of haemoptysis as well as length of treatment, dosage and form of TA administration varied between the studies, strong recommendations are difficult to give. Current best evidence, however, indicates that TA may reduce both the duration and volume of bleeding, with low risk of short-term thromboembolic complications, in patients with haemoptysis.


Asunto(s)
Antifibrinolíticos/uso terapéutico , Hemoptisis/tratamiento farmacológico , Ácido Tranexámico/uso terapéutico , Antifibrinolíticos/efectos adversos , Benchmarking , Medicina Basada en la Evidencia , Hemoptisis/etiología , Humanos , Selección de Paciente , Factores de Riesgo , Tromboembolia/inducido químicamente , Factores de Tiempo , Ácido Tranexámico/efectos adversos , Resultado del Tratamiento
16.
Discov Med ; 11(58): 187-96, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21447278

RESUMEN

Multiple sclerosis (MS) is a complex disorder of the central nervous system characterized by demyelination, axonal loss, and inflammation. The cause of MS is currently unknown although genetic and environmental factors contribute to etiology. The relative importance of each has been disputed; however, now it is clear that much of the disease results from the interaction of the environment and the genetics. Epigenetic modifications within the major histocompatibility complex (MHC) likely mediate interactions at this locus with current known environmental risk factors--vitamin D, Epstein-Barr virus, and smoking. Maternal parent-of-origin effects, month of birth effects and transgenerational differences in allele frequency are also evident in MS and may be mediated by sex-specific epigenetic mechanisms. Differences in epigenetic marks characterize monozygotic twin pairs and may explain discordance. There is promise of potential therapeutic strategies to be found in the epigenetic mechanisms at work in MS.


Asunto(s)
Epigénesis Genética , Complejo Mayor de Histocompatibilidad/genética , Esclerosis Múltiple/genética , Metilación de ADN , Humanos , Factores de Riesgo
17.
Autoimmune Dis ; 2011: 932351, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21197462

RESUMEN

Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these "MS subtypes" should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA