Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 529(7584): 59-62, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26675732

RESUMEN

Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre/química , Planetas , Agua/análisis , Júpiter , Presión , Espectrofotometría Infrarroja , Telescopios , Temperatura
2.
Nature ; 513(7518): 345-52, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25230656

RESUMEN

Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

3.
Proc Natl Acad Sci U S A ; 111(35): 12601-9, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24613929

RESUMEN

Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.


Asunto(s)
Atmósfera/química , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre/química , Modelos Teóricos , Planetas , Planeta Tierra
4.
Proc Natl Acad Sci U S A ; 111(7): 2409-16, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24477692

RESUMEN

Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law.


Asunto(s)
Objetos Astronómicos , Astronomía/métodos , Modelos Teóricos
5.
Proc Natl Acad Sci U S A ; 111(35): 12661-6, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24821792

RESUMEN

The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

6.
Proc Natl Acad Sci U S A ; 112(5): 1241-2, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25650425
7.
Proc Natl Acad Sci U S A ; 111(35): 12599-600, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25337619
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA