Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610787

RESUMEN

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Asunto(s)
Chloroflexi , Glicósido Hidrolasas , Nucleósido Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleósido Q/metabolismo , Proteínas , ARN de Transferencia/metabolismo , Glicósido Hidrolasas/química , Chloroflexi/enzimología
2.
Inorg Chem ; 59(23): 17244-17250, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33215499

RESUMEN

Five isostructural 2D metal-organic frameworks (MOFs), based on a photoactive CuI metallolinker and mixed mono-/dinuclear secondary building units (SBUs), are reported. The MOFs 1(M) (M = Mn, Co, Cu, Zn, and Cd) exhibit broad absorption across the visible-light spectrum and emission centered at ca. 730 nm. Upon photoexcitation, the rigidity of the framework hinders the pseudo-Jahn-Teller distortion of the metallolinker's excited state, providing efficient intersystem crossing into the triplet state. Rapid luminescence quenching in 1(Cu) and 1(Co) suggests photoinduced electron transfer (PET) to the SBUs, whereas lifetimes of up to 22.2 ns are observed in 1(Zn). The quantum yields relative to the parent photosensitizer (PS) decrease for metal nodes containing transition metal ions with partially occupied d-orbitals but increase for the d10 systems CdII and ZnII by a factor of up to 6. Importantly, the excited state decay rates directly correlate with the occupancy of the [MII(OH2)]x moieties in the MOFs providing nonradiative decay pathways via O-H oscillators. Cyclovoltammetry reveals minor changes in CuI/II oxidation potential, with excited-state reduction potentials for 1(M) rivalling Ru analogues. These results establish bis(diimine)copper(I) photosensitizers as viable metallolinkers for MOFs and present a rare example of an isostructural series obtained from a photosensitive metallolinker.

3.
Eur J Pharm Sci ; 181: 106364, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563915

RESUMEN

Multidrug resistance-associated protein 1 (MRP1/ABCC1) is an efflux transporter responsible for the extrusion of endogenous substances as well as xenobiotics and their respective metabolites. Its high expression levels in lung tissue imply a key role in pulmonary drug disposition. Moreover, its association with inflammatory lung diseases underline MRP1's relevance in drug development and precision-medicine. With the aim to develop a tool to better understand MRP1's role in drug disposition and lung disease, we generated an ABCC1-/- clone based on the human distal lung epithelial cell line NCI-H441 via a targeted CRISPR/Cas9 approach. Successful knockout (KO) of MRP1 was confirmed by qPCR, immunoblot and Sanger sequencing. To assess potential compensatory upregulation of transporters with a similar substrate recognition pattern as MRP1, expression levels of MRP2-9 as well as OAT1-4, 6, 7 and 10 were measured. Functional transporter activity was determined via release studies with two prodrug/substrate pairs, i.e. 5(6)-carboxyfluorescein (CF; formed from its diacetate prodrug) and S-(6-(7-methylpurinyl))glutathione (MPG; formed from its prodrug 6-bromo-7-methylpurine, BMP), respectively. Lastly, transepithelial electrical resistance (TEER) of monolayers of the KO clone were compared with wildtype (WT) NCI-H441 cells. Of eight initially generated clones, the M2 titled clone showed complete absence of mRNA and protein in accordance with the designed genome edit. In transport studies using the substrate CF, however, no differences between the KO clone and WT NCI-H441 cells were observed, whilst no differences in expression of potential compensatory transporters was noted. On the other hand, when using BMP/MPG, the release of MPG was reduced to 11.5% in the KO clone. Based on these results, CF appears to be a suboptimal probe for the study of MRP1 function, particularly in organotypic in vitro and ex vivo models. Our ABCC1-/- NCI-H441 clone further retained the ability to form electrically tight barriers, making it a useful model to study MRP1 function in vitro.


Asunto(s)
Profármacos , Humanos , Profármacos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Línea Celular , Pulmón/metabolismo
4.
Nutrients ; 12(3)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213952

RESUMEN

Queuine is a eukaryotic micronutrient, derived exclusively from eubacteria. It is incorporated into both cytosolic and mitochondrial transfer RNA to generate a queuosine nucleotide at position 34 of the anticodon loop. The transfer RNA of primary tumors has been shown to be hypomodified with respect to queuosine, with decreased levels correlating with disease progression and poor patient survival. Here, we assess the impact of queuine deficiency on mitochondrial bioenergetics and substrate metabolism in HeLa cells. Queuine depletion is shown to promote a Warburg type metabolism, characterized by increased aerobic glycolysis and glutaminolysis, concomitant with increased ammonia and lactate production and elevated levels of lactate dehydrogenase activity but in the absence of significant changes to proliferation. In intact cells, queuine deficiency caused an increased rate of mitochondrial proton leak and a decreased rate of ATP synthesis, correlating with an observed reduction in cellular ATP levels. Data from permeabilized cells demonstrated that the activity of individual complexes of the mitochondrial electron transport chain were not affected by the micronutrient. Notably, in queuine free cells that had been adapted to grow in galactose medium, the re-introduction of glucose permitted the mitochondrial F1FO-ATP synthase to operate in the reverse direction, acting to hyperpolarize the mitochondrial membrane potential; a commonly observed but poorly understood cancer trait. Together, our data suggest that queuosine hypomodification is a deliberate and advantageous adaptation of cancer cells to facilitate the metabolic switch between oxidative phosphorylation and aerobic glycolysis.


Asunto(s)
Metabolismo Energético , Guanina/análogos & derivados , Micronutrientes/deficiencia , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Activación Enzimática , Glutamina/metabolismo , Glucólisis , Guanina/metabolismo , Células HeLa , Humanos , Mitocondrias/ultraestructura , Modelos Biológicos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA