Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37951216

RESUMEN

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


Asunto(s)
ARN , Ubiquitina , Humanos , ARN/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Aldehídos , Biosíntesis de Proteínas
2.
EMBO J ; 43(4): 484-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177497

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Asunto(s)
Bacillus subtilis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ribosomas/metabolismo , Péptidos/metabolismo
3.
Nature ; 603(7901): 503-508, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264790

RESUMEN

Ribosome rescue pathways recycle stalled ribosomes and target problematic mRNAs and aborted proteins for degradation1,2. In bacteria, it remains unclear how rescue pathways distinguish ribosomes stalled in the middle of a transcript from actively translating ribosomes3-6. Here, using a genetic screen in Escherichia coli, we discovered a new rescue factor that has endonuclease activity. SmrB cleaves mRNAs upstream of stalled ribosomes, allowing the ribosome rescue factor tmRNA (which acts on truncated mRNAs3) to rescue upstream ribosomes. SmrB is recruited to ribosomes and is activated by collisions. Cryo-electron microscopy structures of collided disomes from E. coli and Bacillus subtilis show distinct and conserved arrangements of individual ribosomes and the composite SmrB-binding site. These findings reveal the underlying mechanisms by which ribosome collisions trigger ribosome rescue in bacteria.


Asunto(s)
Escherichia coli , Ribosomas , Bacterias/genética , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo
4.
Mol Cell ; 70(5): 759-760, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29883601

RESUMEN

Culviner and Laub (2018) use RNA-seq and ribosome profiling to determine how MazF inhibits translation in E. coli. Challenging an earlier model, they argue that MazF cleaves mRNA and blocks ribosome biogenesis but does not generate specialized ribosomes that preferentially translate leaderless transcripts.


Asunto(s)
Escherichia coli/genética , ARN Mensajero , Proteínas de Unión al ADN , Endorribonucleasas , Proteínas de Escherichia coli , ARN Ribosómico , Ribosomas
5.
Nucleic Acids Res ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811035

RESUMEN

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.

6.
Mol Cell ; 66(2): 194-205.e5, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28392174

RESUMEN

The eukaryotic translation factor eIF5A, originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. Using a combination of ribosome profiling and in vitro biochemistry, we report a much broader role for eIF5A in elongation and uncover a critical function for eIF5A in termination. Ribosome profiling of an eIF5A-depleted strain reveals a global elongation defect, with abundant ribosomes stalling at many sequences, not limited to proline stretches. Our data also show ribosome accumulation at stop codons and in the 3' UTR, suggesting a global defect in termination in the absence of eIF5A. Using an in vitro reconstituted translation system, we find that eIF5A strongly promotes the translation of the stalling sequences identified by profiling and increases the rate of peptidyl-tRNA hydrolysis more than 17-fold. We conclude that eIF5A functions broadly in elongation and termination, rationalizing its high cellular abundance and essential nature.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3' , Secuencias de Aminoácidos , Codón de Terminación , Perfilación de la Expresión Génica/métodos , Hidrólisis , Cinética , Factores de Iniciación de Péptidos/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factor 5A Eucariótico de Iniciación de Traducción
7.
EMBO J ; 39(3): e103365, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31858614

RESUMEN

Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause ribosome stalling and reduce protein output. The molecular mechanisms that drive these stalling events, however, are still unknown. Here, we use a combination of in vitro biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued by increased tRNA concentration or by an artificial tRNA not dependent on wobble base-pairing. Ribosome profiling data extend these observations by revealing that paused ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of stalled ribosomes provide a structural explanation for the observed effects by showing decoding-incompatible conformations of mRNA in the A sites of all studied stall- and collision-inducing sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate a novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Codón , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Poli A/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética
8.
J Bacteriol ; 205(2): e0037022, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651772

RESUMEN

The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.


Asunto(s)
Proteínas Bacterianas , Factores de Transcripción , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Elongación de Péptidos/genética , Aminoácidos/metabolismo , Esporas Bacterianas/genética , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica
9.
J Bacteriol ; 204(1): e0029421, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34339296

RESUMEN

Small proteins encoded by open reading frames (ORFs) shorter than 50 codons (small ORFs [sORFs]) are often overlooked by annotation engines and are difficult to characterize using traditional biochemical techniques. Ribosome profiling has tremendous potential to empirically improve the annotations of prokaryotic genomes. Recent improvements in ribosome profiling methods for bacterial model organisms have revealed many new sORFs in well-characterized genomes. Antibiotics that trap ribosomes just after initiation have played a key role in these developments by allowing the unambiguous identification of the start codons (and, hence, the reading frame) for novel ORFs. Here, we describe these new methods and highlight critical controls and considerations for adapting ribosome profiling to different prokaryotic species.


Asunto(s)
Antibacterianos/farmacología , Bacterias/metabolismo , Sistemas de Lectura Abierta , Ribosomas , Bacterias/genética , Codón , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional , ARN Bacteriano , ARN Ribosómico
10.
Nucleic Acids Res ; 48(10): 5201-5216, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32382758

RESUMEN

High-throughput methods, such as ribosome profiling, have revealed the complexity of translation regulation in Bacteria and Eukarya with large-scale effects on cellular functions. In contrast, the translational landscape in Archaea remains mostly unexplored. Here, we developed ribosome profiling in a model archaeon, Haloferax volcanii, elucidating, for the first time, the translational landscape of a representative of the third domain of life. We determined the ribosome footprint of H. volcanii to be comparable in size to that of the Eukarya. We linked footprint lengths to initiating and elongating states of the ribosome on leadered transcripts, operons, and on leaderless transcripts, the latter representing 70% of H. volcanii transcriptome. We manipulated ribosome activity with translation inhibitors to reveal ribosome pausing at specific codons. Lastly, we found that the drug harringtonine arrested ribosomes at initiation sites in this archaeon. This drug treatment allowed us to confirm known translation initiation sites and also reveal putative novel initiation sites in intergenic regions and within genes. Ribosome profiling revealed an uncharacterized complexity of translation in this archaeon with bacteria-like, eukarya-like, and potentially novel translation mechanisms. These mechanisms are likely to be functionally essential and to contribute to an expanded proteome with regulatory roles in gene expression.


Asunto(s)
Codón/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Regiones no Traducidas 5'/genética , Codón/genética , Haloferax volcanii/efectos de los fármacos , Harringtoninas/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Extensión de la Cadena Peptídica de Translación/genética , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/efectos de los fármacos , Huella de Proteína , Sistemas de Lectura/genética , Ribosomas/efectos de los fármacos , Transcriptoma/efectos de los fármacos
11.
Mol Cell ; 51(1): 35-45, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23727016

RESUMEN

Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.


Asunto(s)
Secuencias de Aminoácidos , Factores de Iniciación de Péptidos/fisiología , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Ribosomas/metabolismo , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Factor 5A Eucariótico de Iniciación de Traducción
12.
Nucleic Acids Res ; 45(1): 327-336, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27924019

RESUMEN

Implicated in persistence and stress response pathways in bacteria, RelE shuts down protein synthesis by cleaving mRNA within the ribosomal A site. Structural and biochemical studies have shown that RelE cuts with some sequence specificity, which we further characterize here, and that it shows no activity outside the context of the ribosome. We obtained a global view of the effect of RelE on translation by ribosome profiling, observing that ribosomes accumulate on the 5'-end of genes through dynamic cycles of mRNA cleavage, ribosome rescue and initiation. Moreover, the addition of purified RelE to cell lysates shows promise as a method for generating ribosome footprints. In bacteria, profiling studies have suffered from relatively low resolution and have yielded no information on reading frame due to problems inherent to MNase digestion, the method used to degrade unprotected regions of mRNA. In contrast, we find that RelE yields precise 3'-ends that for the first time reveal reading frame in bacteria. Given that RelE has been shown to function in all three domains of life, RelE has potential to improve reading frame and shed light on A-site occupancy in ribosome profiling experiments more broadly.


Asunto(s)
Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero/genética , Toxinas Bacterianas/metabolismo , Huella de ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo
13.
RNA ; 20(2): 228-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24345396

RESUMEN

In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon-anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB's affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.


Asunto(s)
Escherichia coli/genética , Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Guanosina Trifosfato/química , Hidrólisis , Cinética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Mutación Puntual , Unión Proteica , Piridonas/farmacología , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética
14.
RNA ; 20(11): 1706-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25246654

RESUMEN

Messenger RNAs lacking a stop codon trap ribosomes at their 3' ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3' extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3' extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3' extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Unión Proteica , Biosíntesis de Proteínas , Ribosomas/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(10): E878-87, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431150

RESUMEN

Although the ribosome is a very general catalyst, it cannot synthesize all protein sequences equally well. For example, ribosomes stall on the secretion monitor (SecM) leader peptide to regulate expression of a downstream gene. Using a genetic selection in Escherichia coli, we identified additional nascent peptide motifs that stall ribosomes. Kinetic studies show that some nascent peptides dramatically inhibit rates of peptide release by release factors. We find that residues upstream of the minimal stalling motif can either enhance or suppress this effect. In other stalling motifs, peptidyl transfer to certain aminoacyl-tRNAs is inhibited. In particular, three consecutive Pro codons pose a challenge for elongating ribosomes. The translation factor elongation factor P, which alleviates pausing at polyproline sequences, has little or no effect on other stalling peptides. The motifs that we identified are underrepresented in bacterial proteomes and show evidence of stalling on endogenous E. coli proteins.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Reporteros , Modelos Biológicos , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Elongación de Péptidos/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Ribosomas/metabolismo , Técnicas del Sistema de Dos Híbridos
16.
Nat Commun ; 15(1): 2011, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443396

RESUMEN

Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurements of translation at the genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts in these data and identify sequence determinants of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. When trained on an unbiased dataset, Riboformer corrects experimental artifacts in previously unseen datasets, which reveals subtle differences in synonymous codon translation and uncovers a bottleneck in translation elongation. Further, we show that Riboformer can be combined with in silico mutagenesis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.


Asunto(s)
Aprendizaje Profundo , Magnoliopsida , Artefactos , Concienciación , Codón/genética
17.
RNA ; 17(9): 1727-36, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795410

RESUMEN

In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.


Asunto(s)
ARN Bacteriano/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Anticodón/genética , Dicroismo Circular , Codón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Immunoblotting , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Aminoacilación de ARN de Transferencia
18.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163112

RESUMEN

Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurement of translation at genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts and identify sequence determinant of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. It corrects experimental artifacts in previously unseen datasets, reveals subtle differences in synonymous codon translation and uncovers a bottleneck in protein synthesis. Further, we show that Riboformer can be combined with in silico mutagenesis analysis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.

19.
bioRxiv ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37205477

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.

20.
Elife ; 102021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382933

RESUMEN

N1-methylation of G37 is required for a subset of tRNAs to maintain the translational reading-frame. While loss of m1G37 increases ribosomal +1 frameshifting, whether it incurs additional translational defects is unknown. Here, we address this question by applying ribosome profiling to gain a genome-wide view of the effects of m1G37 deficiency on protein synthesis. Using E coli as a model, we show that m1G37 deficiency induces ribosome stalling at codons that are normally translated by m1G37-containing tRNAs. Stalling occurs during decoding of affected codons at the ribosomal A site, indicating a distinct mechanism than that of +1 frameshifting, which occurs after the affected codons leave the A site. Enzyme- and cell-based assays show that m1G37 deficiency reduces tRNA aminoacylation and in some cases peptide-bond formation. We observe changes of gene expression in m1G37 deficiency similar to those in the stringent response that is typically induced by deficiency of amino acids. This work demonstrates a previously unrecognized function of m1G37 that emphasizes its role throughout the entire elongation cycle of protein synthesis, providing new insight into its essentiality for bacterial growth and survival.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico , Expresión Génica , Biosíntesis de Proteínas/fisiología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Metilación , Biosíntesis de Proteínas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA