Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7980): 773-781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612513

RESUMEN

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Asunto(s)
Biodiversidad , Ambiente , Especies Introducidas , Árboles , Bases de Datos Factuales , Actividades Humanas , Especies Introducidas/estadística & datos numéricos , Especies Introducidas/tendencias , Filogenia , Lluvia , Temperatura , Árboles/clasificación , Árboles/fisiología
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101981

RESUMEN

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles/clasificación , Planeta Tierra , Árboles/crecimiento & desarrollo
4.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659889

RESUMEN

Agricultural production is predicted to be adversely affected by an increase in drought and heatwaves. Drought and heat damage cellular membranes, such as the thylakoid membranes where photosystem II occurs (PSII). We investigated the chlorophyll fluorescence (ChlF) of PSII, photosynthetic pigments, membrane damage, and the activity of protective antioxidants in drought-tolerant and -sensitive varieties of C3 sunflower and C4 maize grown at 20/25 and 30/35 °C. Drought-tolerant varieties retained PSII electron transport at lower levels of water availability at both temperatures. Drought and heat stress, in combination and isolation, had a more pronounced effect on the ChlF of the C3 species. For phenotyping, the maximum fluorescence was the most effective ChlF measure in characterizing varietal variation in the response of both species to drought and heat. The drought-tolerant sunflower and maize showed lower lipid peroxidation under drought and heat stress. The greater retention of PSII function in the drought-tolerant sunflower and maize at higher temperatures was associated with an increase in the activities of antioxidants (glutathione reductase, superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase), whereas antioxidant activity declined in the drought-sensitive varieties. Antioxidant activity should play a key role in the development of drought- and heat-tolerant crops for future food security.


Asunto(s)
Antioxidantes/metabolismo , Clorofila/metabolismo , Respuesta al Choque Térmico/fisiología , Helianthus/metabolismo , Peroxidación de Lípido/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Zea mays/metabolismo , Sequías , Fluorescencia , Calor , Fotosíntesis/fisiología , Agua/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(13): 3557-62, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979952

RESUMEN

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Asunto(s)
Biodiversidad , Bosques , Simulación por Computador , Bases de Datos Factuales , Ecosistema , Europa (Continente) , Agricultura Forestal , Modelos Biológicos , Árboles
6.
Ecol Lett ; 21(1): 31-42, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143494

RESUMEN

Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Clima , Europa (Continente) , Humanos
7.
Ecol Lett ; 20(11): 1414-1426, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925074

RESUMEN

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Cambio Climático , Europa (Continente)
8.
New Phytol ; 214(3): 1281-1293, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28181238

RESUMEN

Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions.


Asunto(s)
Bosques , Árboles/fisiología , Biodiversidad , Europa (Continente) , Modelos Lineales , Hojas de la Planta/fisiología , Especificidad de la Especie , Madera/fisiología
9.
Photosynth Res ; 132(1): 13-66, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27815801

RESUMEN

Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.


Asunto(s)
Clorofila/química , Clorofila/metabolismo , Fluorescencia , Técnicas Biosensibles , Clorofila A , Productos Agrícolas , Complejo de Citocromo b6f/metabolismo , Citocromos b6/metabolismo , Transporte de Electrón , Herbicidas/toxicidad , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico , Temperatura , Árboles
10.
Physiol Plant ; 159(2): 130-147, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27535211

RESUMEN

Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs ), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions.


Asunto(s)
Adaptación Fisiológica , Helianthus/fisiología , Agua/fisiología , Zea mays/fisiología , Agricultura , Biomasa , Productos Agrícolas , Sequías , Helianthus/crecimiento & desarrollo , Calor , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa , Estrés Fisiológico , Zea mays/crecimiento & desarrollo
11.
Physiol Plant ; 161(3): 355-371, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28593746

RESUMEN

Several experiments have highlighted the complexity of stress interactions involved in plant response. The impact in field conditions of combined environmental constraints on the mechanisms involved in plant photosynthetic response, however, remains understudied. In a long-term field study performed in a managed grassland, we investigated the photosynthetic apparatus response of the perennial ryegrass (Lolium perenne L.) to environmental constraints and its ability to recover and acclimatize. Frequent field measurements of chlorophyll a fluorescence (ChlF) were made in order to determine the photosynthetic performance response of a population of L. perenne. Strong midday declines in the maximum quantum yield of primary photochemistry (FV FM ) were observed in summer, when a combination of heat and high light intensity increased photosynthetic inhibition. During this period, increase in photosystem I (PSI) activity efficiency was also recorded, suggesting an increase in the photochemical pathway for de-excitation in summer. Strong climatic events (e.g. heat waves) were shown to reduce electron transport between photosystem II (PSII) and PSI. This reduction might have preserved the PSI from photo-oxidation. Periods of low soil moisture and high levels of sun irradiance increased PSII sensitivity to heat stress, suggesting increased susceptibility to combined environmental constraints. Despite the multiple inhibitions of photosynthetic functionality in summer, the L. perenne population showed increased PSII tolerance to environmental stresses in August. This might have been a response to earlier environmental constraints. It could also be linked to the selection and/or emergence of well-adapted individuals.


Asunto(s)
Clorofila/metabolismo , Pradera , Lolium/fisiología , Fotosíntesis , Estrés Fisiológico , Clorofila A , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Estaciones del Año , Suelo , Factores de Tiempo
12.
New Phytol ; 212(1): 51-65, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27265248

RESUMEN

The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored.


Asunto(s)
Clorofila/metabolismo , Fenómenos Ecológicos y Ambientales , Bosques , Árboles/clasificación , Absorción de Radiación , Clorofila A , Análisis por Conglomerados , Europa (Continente) , Fluorescencia , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Especificidad de la Especie
13.
Photosynth Res ; 122(2): 121-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25119687

RESUMEN

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Asunto(s)
Clorofila/química , Fluorescencia , Fotosíntesis/fisiología , Clorofila/metabolismo , Clorofila A , Luz
14.
Glob Chang Biol ; 20(11): 3423-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24729460

RESUMEN

We studied forest monitoring data collected at permanent plots in Italy over the period 2000-2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N-NO3 +N-NH4 ) ranged between 4 and 29 kg ha(-1)  yr(-1) , with Critical Loads (CLs) for nutrient N exceeded at several sites. Evidence is consistent in pointing out effects of N deposition on soil and tree nutrition: topsoil exchangeable base cations (BCE) and pH decreased with increasing N deposition, and foliar nutrient N ratios (especially N : P and N : K) increased. Comparison between bulk openfield and throughfall data suggested possible canopy uptake of N, levelling out for bulk deposition >4-6 kg ha(-1)  yr(-1) . Partial Least Square (PLS) regression revealed that - although stand and meteorological variables explained the largest portion of variance in relative basal area increment (BAIrel 2000-2009) - N-related predictors (topsoil BCE, C : N, pH; foliar N-ratios; N deposition) nearly always improved the BAIrel model in terms of variance explained (from 78.2 to 93.5%) and error (from 2.98 to 1.50%). N deposition was the strongest predictor even when stand, management and atmosphere-related variables (meteorology and tropospheric ozone) were accounted for. The maximal annual response of BAIrel was estimated at 0.074-0.085% for every additional kgN. This corresponds to an annual maximal relative increase of 0.13-0.14% of carbon sequestered in the above-ground woody biomass for every additional kgN, i.e. a median value of 159 kgC per kgN ha(-1)  yr(-1) (range: 50-504 kgC per kgN, depending on the site). Positive growth response occurred also at sites where signals of possible, perhaps recent N saturation were detected. This may suggest a time lag for detrimental N effects, but also that, under continuous high N input, the reported positive growth response may be not sustainable in the long-term.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Bosques , Nitrógeno/metabolismo , Contaminantes del Suelo/metabolismo , Árboles/crecimiento & desarrollo , Monitoreo del Ambiente , Italia
15.
Sci Total Environ ; 904: 166809, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690750

RESUMEN

Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.


Asunto(s)
Quercus , Quercus/fisiología , Ecosistema , Genotipo , Bosques , Árboles , Agua , Sequías
16.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37872262

RESUMEN

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Asunto(s)
Ecosistema , Árboles , Humanos , Árboles/metabolismo , Bosques , Hojas de la Planta/metabolismo , Hábitos , Carbono/metabolismo
18.
Front Plant Sci ; 13: 1048582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589121

RESUMEN

Chlorophyll a fluorescence (ChF) signal analysis has become a widely used and rapid, non-invasive technique to study the photosynthetic process under stress conditions. It monitors plant responses to various environmental factors affecting plants under experimental and field conditions. Thus, it enables extensive research in ecology and benefits forestry, agriculture, horticulture, and arboriculture. Woody plants, especially trees, as organisms with a considerable life span, have a different life strategy than herbaceous plants and show more complex responses to stress. The range of changes in photosynthetic efficiency of trees depends on their age, ontogeny, species-specific characteristics, and acclimation ability. This review compiles the results of the most commonly used ChF techniques at the foliar scale. We describe the results of experimental studies to identify stress factors that affect photosynthetic efficiency and analyse the experience of assessing tree vigour in natural and human-modified environments. We discuss both the circumstances under which ChF can be successfully used to assess woody plant health and the ChF parameters that can be useful in field research. Finally, we summarise the advantages and limitations of the ChF method in research on trees, shrubs, and woody vines.

19.
J Environ Monit ; 12(12): 2237-43, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20877876

RESUMEN

Specific visible foliar injuries were demonstrated to occur on plants of Viburnum lantana L. (wayfaring tree) when exposed to ozone in open-top chamber experiments. However, although evidence of visible injury was reported even for native plants, no comprehensive testing has been carried out under real field conditions. Thus, the extent to which V. lantana may match the requirements to be used as an in situ bioindicator is not fully known. To investigate the actual responsiveness of native V. lantana plants to ozone under field condition, two 1 × 1 km quadrates (named "Margone" and "Lasino"), for which the occurrence of different ozone levels was known, were considered. There, a fully randomized design was adopted to ensure within-quadrate replications and to select V. lantana plants. Measurements confirmed different exposure levels (Margone, Accumulated ozone concentrations Over a Threshold of 40 ppb h (AOT40): 31 952 ppb h; Lasino, AOT40: 23 259 ppb h). Ozone visible foliar symptoms (i) matched the known symptomatology, (ii) were easy to be identified, (iii) confirmed by microscopical validation, and (iv) observed at both quadrates. However, higher frequency of symptoms, earlier date of onset and faster development occurred at the quadrate with the highest ozone exposure (Margone), although not always proportionally with the difference in ozone exposure. This may be partly due to inherent covariation of environmental variables (higher ozone exposure occurred at the sites with higher relative humidity and cooler air temperature, a set of conditions that may promote ozone uptake), and partly due to a set of (unmeasured) other factors that may cause additional oxidative stress to plants. Implications for biomonitoring are discussed.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ozono/toxicidad , Viburnum , Monitoreo del Ambiente , Italia , Hojas de la Planta
20.
Tree Physiol ; 40(11): 1561-1571, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32597979

RESUMEN

A chlorophyll fluorescence (ChlF) assessment was carried out on oak seedlings (Quercus ilex L., Quercus pubescens Willd., Quercus frainetto Ten.) of Italian and Greek provenance, during the years 2017 and 2018, in a common garden in central Italy planted in 2017. This trial aimed to test the relative performances of the oak species in the perspective of assisted migration as part of the actions for the adaptation of forests to climate change. The assessment of the photosynthetic performance of the tree species included the analysis of the prompt chlorophyll fluorescence (PF) transient and the modulated reflection (MR) at 820 nm, leaf chlorophyll content, leaf gas exchange (net photosynthesis, stomatal conductance), plant growth (i.e., height) and mortality rate after 2 years from the beginning of the experiment. The assessment of the performance of the three oak species was carried out 'in vivo'. Plants were generated from seeds and exposed to several environmental factors, including changing seasonal temperature, water availability, and soil biological and physical functionality. The results of PF indicate a stable functionality of the photosynthetic system PSII (expressed as FV/FM) across species and provenances and a decline in photochemistry functionality at the I-P phase (ΔVIP) in Q. frainetto, thus indicating a decline of the content of PSI in this species. This result was confirmed by the findings of MR analysis, with the speed of reduction and subsequent oxidation of PSI (VRED and VOX) strongly correlated to the amplitude of ΔVIP. The photosynthetic rates (net photosynthesis, PN) and growth were correlated with the parameters associated with PSI content and function, rather than those related to PSII. The low performance of Q. frainetto in the common garden seems to be related to early foliar senescence with the depletion of nitrogen, due to suboptimal climatic and edaphic conditions. Chlorophyll fluorescence allowed discrimination of populations of oak species and individuation of the less (or/and best) suitable species for future forest ecology and management purposes.


Asunto(s)
Quercus , Árboles , Cambio Climático , Bosques , Italia , Fotosíntesis , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA