Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut Microbes ; 14(1): 2149023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420990

RESUMEN

The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.


Asunto(s)
Microbioma Gastrointestinal , Transcriptoma , Femenino , Humanos , Ratones , Animales , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Tracto Gastrointestinal/microbiología , Bacterias/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
Cell Death Dis ; 12(10): 864, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556638

RESUMEN

Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.


Asunto(s)
Caspasa 8/metabolismo , Células Epiteliales/patología , Interferón gamma/metabolismo , Intestinos/patología , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Apoptosis , Biopsia , Muerte Celular , Línea Celular Tumoral , Colon/patología , Citoprotección , Células Epiteliales/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Mitocondrias/metabolismo , Organoides/patología , Interferencia de ARN , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal
3.
Cell Death Dis ; 11(1): 68, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988296

RESUMEN

Proteins of the BCL-2 family are evolutionarily conserved modulators of apoptosis that function as sensors of cellular integrity. Over the past three decades multiple BCL-2 family members have been identified, many of which are now fully incorporated into regulatory networks governing the mitochondrial apoptotic pathway. For some, however, an exact role in cell death signalling remains unclear. One such 'orphan' BCL-2 family member is BCL-G (or BCL2L14). In this study we analysed gastrointestinal expression of human BCL-G in health and disease states, and investigated its contribution to inflammation-induced tissue damage by exposing intestinal epithelial cells (IEC) to IFN-γ and TNF-α, two pro-inflammatory mediators associated with gut immunopathology. We found that both BCL-G splice variants - BCL-GS (short) and BCL-GL (long) - were highly expressed in healthy gut tissue, and that their mRNA levels decreased in active inflammatory bowel diseases (for BCL-GS) and colorectal cancer (for BCL-GS/L). In vitro studies revealed that IFN-γ and TNF-α synergised to upregulate BCL-GS/L and to trigger apoptosis in colonic epithelial cell lines and primary human colonic organoids. Using RNAi, we showed that synergistic induction of IEC death was STAT1-dependent while optimal expression of BCL-GS/L required STAT1, NF-κB/p65 and SWI/SNF-associated chromatin remodellers BRM and BRG1. To test the direct contribution of BCL-G to the effects of IFN-γ and TNF-α on epithelial cells, we used RNAi- and CRISPR/Cas9-based perturbations in parallel with isoform-specific overexpression of BCL-G, and found that BCL-G was dispensable for Th1 cytokine-induced apoptosis of human IEC. Instead, we discovered that depletion of BCL-G differentially affected secretion of inflammatory chemokines CCL5 and CCL20, thus uncovering a non-apoptotic immunoregulatory function of this BCL-2 family member. Taken together, our data indicate that BCL-G may be involved in shaping immune responses in the human gut in health and disease states through regulation of chemokine secretion rather than intestinal apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Quimiocinas/metabolismo , Células Epiteliales/metabolismo , Interferón gamma/farmacología , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL5/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células Epiteliales/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , FN-kappa B/metabolismo , Organoides/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
4.
Cancer Res ; 79(10): 2619-2633, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885980

RESUMEN

The PDLIM2 protein regulates stability of transcription factors including NF-κB and STATs in epithelial and hemopoietic cells. PDLIM2 is strongly expressed in certain cancer cell lines that exhibit an epithelial-to-mesenchymal phenotype, and its suppression is sufficient to reverse this phenotype. PDLIM2 supports the epithelial polarity of nontransformed breast cells, suggesting distinct roles in tumor suppression and oncogenesis. To better understand its overall function, we investigated PDLIM2 expression and activity in breast cancer. PDLIM2 protein was present in 60% of tumors diagnosed as triple-negative breast cancer (TNBC), and only 20% of other breast cancer subtypes. High PDLIM2 expression in TNBC was positively correlated with adhesion signaling and ß-catenin activity. Interestingly, PDLIM2 was restricted to the cytoplasm/membrane of TNBC cells and excluded from the nucleus. In breast cell lines, PDLIM2 retention in the cytoplasm was controlled by cell adhesion, and translocation to the nucleus was stimulated by insulin-like growth factor-1 or TGFß. Cytoplasmic PDLIM2 was associated with active ß-catenin and ectopic expression of PDLIM2 was sufficient to increase ß-catenin levels and its transcriptional activity in reporter assays. Suppression of PDLIM2 inhibited tumor growth in vivo, whereas overexpression of PDLIM2 disrupted growth in 3D cultures. These results suggest that PDLIM2 may serve as a predictive biomarker for a large subset of TNBC whose phenotype depends on adhesion-regulated ß-catenin activity and which may be amenable to therapies that target these pathways. SIGNIFICANCE: This study shows that PDLIM2 expression defines a subset of triple-negative breast cancer that may benefit from targeting the ß-catenin and adhesion signaling pathways. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/10/2619/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Adhesión Celular , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , beta Catenina/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HEK293 , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-26191041

RESUMEN

IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell-cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize ß1 integrin and participate in signaling complexes that promote invasiveness associated with epithelial mesenchymal transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to non-invasive tumor growth may be strongly influenced by the degree of extracellular matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion complexes. One such protein is PDLIM2, which promotes both cell polarization and EMT by regulating the stability of transcription factors including NFκB, STATs, and beta catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R signaling during cancer progression or adaptive responses to therapy. Thus, identifying the key modulators will be important for developing effective therapeutic strategies and predictive biomarkers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA