Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(7): E657-66, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646492

RESUMEN

Polo-like kinase 4 (Plk4) is a master regulator of centriole duplication, and its hyperactivity induces centriole amplification. Homodimeric Plk4 has been shown to be ubiquitinated as a result of autophosphorylation, thus promoting its own degradation and preventing centriole amplification. Unlike other Plks, Plk4 contains three rather than two Polo box domains, and the function of its third Polo box (PB3) is unclear. Here, we performed a functional analysis of Plk4's structural domains. Like other Plks, Plk4 possesses a previously unidentified autoinhibitory mechanism mediated by a linker (L1) near the kinase domain. Thus, autoinhibition is a conserved feature of Plks. In the case of Plk4, autoinhibition is relieved after homodimerization and is accomplished by PB3 and by autophosphorylation of L1. In contrast, autophosphorylation of the second linker promotes separation of the Plk4 homodimer. Therefore, autoinhibition delays the multiple consequences of activation until Plk4 dimerizes. These findings reveal a complex mechanism of Plk4 regulation and activation which govern the process of centriole duplication.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Dimerización , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Electroforesis en Gel de Poliacrilamida Nativa , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Ubiquitinación
2.
PLoS Genet ; 11(2): e1005014, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25723539

RESUMEN

The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.


Asunto(s)
Caseína Quinasa Ialfa/genética , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico/genética , Proteínas de Drosophila/genética , Mitosis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Caseína Quinasa Ialfa/metabolismo , Centrómero/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Glándulas Salivales/metabolismo
3.
Genes Dev ; 23(16): 1876-81, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19684111

RESUMEN

The Drosophila Augmin complex localizes gamma-tubulin to the microtubules of the mitotic spindle, regulating the density of spindle microtubules in tissue culture cells. Here, we identify the microtubule-associated protein Msd1 as a new component of the Augmin complex and demonstrate directly that it is required for nucleation of microtubules from within the mitotic spindle. Although Msd1 is necessary for embryonic syncytial mitoses, flies possessing a mutation in msd1 are viable. Importantly, however, in the absence of centrosomes, microtubule nucleation from within the spindle becomes essential. Thus, the Augmin complex has a crucial role in the development of the fly.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación , Tubulina (Proteína)/metabolismo
4.
Mol Biol Cell ; 34(8): ar80, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163316

RESUMEN

Polo-like kinase 4 (Plk4) is the master-regulator of centriole assembly, and cell cycle-dependent regulation of its activity maintains proper centrosome number. During most of the cell cycle, Plk4 levels are nearly undetectable due to its ability to autophosphorylate and trigger its own ubiquitin-mediated degradation. However, during mitotic exit, Plk4 forms a single aggregate on the centriole surface to stimulate centriole duplication. Whereas most Polo-like kinase family members are monomeric, Plk4 is unique because it forms homodimers. Notably, Plk4 trans-autophosphorylates a degron near its kinase domain, a critical step in autodestruction. While it is thought that the purpose of homodimerization is to promote trans-autophosphorylation, this has not been tested. Here, we generated separation-of-function Plk4 mutants that fail to dimerize and show that homodimerization creates a binding site for the Plk4 activator, Asterless. Surprisingly, however, Plk4 dimer mutants are catalytically active in cells, promote centriole assembly, and can trans-autophosphorylate through concentration-dependent condensate formation. Moreover, we mapped and then deleted the weak-interacting regions within Plk4 that mediate condensation and conclude that dimerization and condensation are not required for centriole assembly. Our findings suggest that Plk4 dimerization and condensation function simply to down-regulate Plk4 and suppress centriole overduplication.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Centriolos/metabolismo , Dimerización , Línea Celular , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Fosforilación
5.
Nat Cell Biol ; 7(3): 235-45, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723056

RESUMEN

Regulation of microtubule polymerization and depolymerization is required for proper cell development. Here, we report that two proteins of the Drosophila melanogaster kinesin-13 family, KLP10A and KLP59C, cooperate to drive microtubule depolymerization in interphase cells. Analyses of microtubule dynamics in S2 cells depleted of these proteins indicate that both proteins stimulate depolymerization, but alter distinct parameters of dynamic instability; KLP10A stimulates catastrophe (a switch from growth to shrinkage) whereas KLP59C suppresses rescue (a switch from shrinkage to growth). Moreover, immunofluorescence and live analyses of cells expressing tagged kinesins reveal that KLP10A and KLP59C target to polymerizing and depolymerizing microtubule plus ends, respectively. Our data also suggest that KLP10A is deposited on microtubules by the plus-end tracking protein, EB1. Our findings support a model in which these two members of the kinesin-13 family divide the labour of microtubule depolymerization.


Asunto(s)
Interfase , Cinesinas/fisiología , Microtúbulos/ultraestructura , Animales , Western Blotting , Línea Celular , Drosophila , Drosophila melanogaster , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Polímeros/química , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Bicatenario/química , Factores de Tiempo
6.
J Cell Biol ; 177(2): 231-42, 2007 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-17452528

RESUMEN

Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the activities of three different microtubule severing enzymes, Spastin, Fidgetin, and Katanin. Spastin and Fidgetin are utilized to stimulate microtubule minus-end depolymerization and flux. Both proteins concentrate at centrosomes, where they catalyze the turnover of gamma-tubulin, consistent with the hypothesis that they exert their influence by releasing stabilizing gamma-tubulin ring complexes from minus ends. In contrast, Katanin appears to function primarily on anaphase chromosomes, where it stimulates microtubule plus-end depolymerization and Pacman-based chromatid motility. Collectively, these findings reveal novel and significant roles for microtubule severing within the spindle and broaden our understanding of the molecular machinery used to move chromosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Anafase , Animales , Línea Celular , Centrosoma/metabolismo , Segregación Cromosómica , Drosophila melanogaster/citología , Katanina , Metafase , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares/metabolismo , Tubulina (Proteína)/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(19): 7846-51, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19416899

RESUMEN

Tight regulation of kinetochore microtubule dynamics is required to generate the appropriate position and movement of chromosomes on the mitotic spindle. A widely studied but mysterious aspect of this regulation occurs during metaphase when polymerization of kinetochore microtubule plus-ends is balanced by depolymerization at their minus-ends. Thus, kinetochore microtubules maintain a constant net length, allowing chromosomes to persist at the spindle equator, but consist of tubulin subunits that continually flux toward spindle poles. Here, we construct a feasible network of regulatory proteins for controlling kinetochore microtubule plus-end dynamics, which was combined with a Monte Carlo algorithm to simulate metaphase tubulin flux. We also test the network model by combining it with a force-balancing model explicitly taking force generators into account. Our data reveal how relatively simple interrelationships among proteins that stimulate microtubule plus-end polymerization, depolymerization, and dynamicity can induce robust flux while accurately predicting apparently contradictory results of knockdown experiments. The model also provides a simple and robust physical mechanism through which the regulatory networks at kinetochore microtubule plus- and minus-ends could communicate.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Algoritmos , Animales , Simulación por Computador , Drosophila , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Metafase , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Modelos Biológicos , Modelos Estadísticos , Interferencia de ARN , Huso Acromático/metabolismo
8.
Curr Biol ; 17(22): 1960-6, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-17980596

RESUMEN

As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis.


Asunto(s)
Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/metabolismo , Diferenciación Celular/fisiología , Células HeLa , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/fisiología
9.
Mol Biol Cell ; 18(8): 3094-104, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17553931

RESUMEN

The poleward flux of tubulin subunits through spindle microtubules is a striking and conserved phenomenon whose function and molecular components remain poorly understood. To screen for novel components of the flux machinery, we utilized RNA interference to deplete regulators of microtubule dynamics, individually and in various combinations, from S2 cells and examined the resulting impact on flux rate. This led to the identification of two previously unknown flux inhibitors, KLP59C and KLP67A, and a flux promoter, Mini-spindles. Furthermore, we find that flux rate is regulated by functional antagonism among microtubule stabilizers and destabilizers specifically at plus ends. Finally, by examining mitosis on spindles in which flux has been up- or down-regulated or restored after the codepletion of antagonistic flux regulators, we show that flux is an integral contributor to anaphase A but is not responsible for chromosome congression, interkinetochore tension, or the establishment of normal spindle length during prometaphase/metaphase.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Anafase , Animales , Polaridad Celular , Segregación Cromosómica , Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos
10.
J Cell Biol ; 219(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841145

RESUMEN

During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2-G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centriolos/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Ciclo Celular/genética , Línea Celular , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Asociadas a Microtúbulos/genética , Fosforilación/genética , Unión Proteica/genética
11.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31130353

RESUMEN

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Asunto(s)
Proteínas Cdh1/metabolismo , Centriolos/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Animales , Proteínas Cdh1/genética , Ciclo Celular , Células Cultivadas , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Células-Madre Neurales/citología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
12.
Mol Biol Cell ; 29(23): 2874-2886, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256714

RESUMEN

Centriole assembly initiates when Polo-like kinase 4 (Plk4) interacts with a centriole "targeting-factor." In Drosophila, Asterless/Asl (Cep152 in humans) fulfills the targeting role. Interestingly, Asl also regulates Plk4 levels. The N-terminus of Asl (Asl-A; amino acids 1-374) binds Plk4 and promotes Plk4 self-destruction, although it is unclear how this is achieved. Moreover, Plk4 phosphorylates the Cep152 N-terminus, but the functional consequence is unknown. Here, we show that Plk4 phosphorylates Asl and mapped 13 phospho-residues in Asl-A. Nonphosphorylatable alanine (13A) and phosphomimetic (13PM) mutants did not alter Asl function, presumably because of the dominant role of the Asl C-terminus in Plk4 stabilization and centriolar targeting. To address how Asl-A phosphorylation specifically affects Plk4 regulation, we generated Asl-A fragment phospho-mutants and expressed them in cultured Drosophila cells. Asl-A-13A stimulated kinase activity by relieving Plk4 autoinhibition. In contrast, Asl-A-13PM inhibited Plk4 activity by a novel mechanism involving autophosphorylation of Plk4's kinase domain. Thus, Asl-A's phosphorylation state determines which of Asl-A's two opposing effects are exerted on Plk4. Initially, nonphosphorylated Asl binds Plk4 and stimulates its kinase activity, but after Asl is phosphorylated, a negative-feedback mechanism suppresses Plk4 activity. This dual regulatory effect by Asl-A may limit Plk4 to bursts of activity that modulate centriole duplication.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centriolos/metabolismo , Drosophila , Fosforilación , Unión Proteica
13.
J Cell Biol ; 217(4): 1217-1231, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29496738

RESUMEN

Polo-like kinase 4 (Plk4) initiates an early step in centriole assembly by phosphorylating Ana2/STIL, a structural component of the procentriole. Here, we show that Plk4 binding to the central coiled-coil (CC) of Ana2 is a conserved event involving Polo-box 3 and a previously unidentified putative CC located adjacent to the kinase domain. Ana2 is then phosphorylated along its length. Previous studies showed that Plk4 phosphorylates the C-terminal STil/ANa2 (STAN) domain of Ana2/STIL, triggering binding and recruitment of the cartwheel protein Sas6 to the procentriole assembly site. However, the physiological relevance of N-terminal phosphorylation was unknown. We found that Plk4 first phosphorylates the extreme N terminus of Ana2, which is critical for subsequent STAN domain modification. Phosphorylation of the central region then breaks the Plk4-Ana2 interaction. This phosphorylation pattern is important for centriole assembly and integrity because replacement of endogenous Ana2 with phospho-Ana2 mutants disrupts distinct steps in Ana2 function and inhibits centriole duplication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centriolos/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Centriolos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Transducción de Señal
14.
Methods Mol Med ; 137: 139-60, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18085227

RESUMEN

Kinetochores are essential for the proper positioning, movement and segregation of chromosomes on spindle microtubules. Live cell analyses of kinetochore movements on the spindle provide an important tool for dissecting the molecular machinery underlying kinetochore-based chromosome motility. Here, we describe contemporary techniques for studying and manipulating kinetochore function in live Drosophila syncytial blastoderm-stage embryos and S2 cells.


Asunto(s)
Drosophila/fisiología , Cinetocoros/fisiología , Microtúbulos/fisiología , Animales , Línea Celular , Cromosomas/química , Cromosomas/fisiología , Cromosomas/ultraestructura , Drosophila/embriología , Cinetocoros/química , Cinetocoros/ultraestructura , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microtúbulos/química , Microtúbulos/ultraestructura , Huso Acromático/química , Huso Acromático/fisiología , Huso Acromático/ultraestructura
15.
Nat Commun ; 7: 12476, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558293

RESUMEN

The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein-protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a 'domain-level' centrosome interactome using direct protein-protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Duplicación de Gen , Orgánulos/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Especificidad por Sustrato
16.
J Cell Biol ; 208(4): 401-14, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25688134

RESUMEN

Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4's tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl-Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinasas/química , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estabilidad de Enzimas , Mitosis/genética , Fosforilación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño
17.
Methods Mol Biol ; 1136: 81-101, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24633795

RESUMEN

Cultured Drosophila cell lines have been developed into a powerful tool for studying a wide variety of cellular processes. Their ability to be easily and cheaply cultured as well as their susceptibility to protein knockdown via double-stranded RNA-mediated interference (RNAi) has made them the model system of choice for many researchers in the fields of cell biology and functional genomics. Here we describe basic techniques for gene knockdown, transgene expression, preparation for fluorescence microscopy, and centrosome enrichment using cultured Drosophila cells with an emphasis on studying the microtubule cytoskeleton.


Asunto(s)
Drosophila/metabolismo , Microtúbulos/metabolismo , Animales , Línea Celular , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Drosophila/genética , Microscopía Fluorescente , Microtúbulos/genética , Interferencia de ARN , Imagen de Lapso de Tiempo
18.
Curr Biol ; 23(22): 2255-2261, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24184097

RESUMEN

Polo-like kinase 4 (Plk4) is a conserved master regulator of centriole assembly. Previously, we found that Drosophila Plk4 protein levels are actively suppressed during interphase. Degradation of interphase Plk4 prevents centriole overduplication and is mediated by the ubiquitin-ligase complex SCF(Slimb/ßTrCP). Since Plk4 stability depends on its activity, we studied the consequences of inactivating Plk4 or perturbing its phosphorylation state within its Slimb-recognition motif (SRM). Mass spectrometry of in-vitro-phosphorylated Plk4 and Plk4 purified from cells reveals that it is directly responsible for extensively autophosphorylating and generating its Slimb-binding phosphodegron. Phosphorylatable residues within this regulatory region were systematically mutated to determine their impact on Plk4 protein levels and centriole duplication when expressed in S2 cells. Notably, autophosphorylation of a single residue (Ser293) within the SRM is critical for Slimb binding and ubiquitination. Our data also demonstrate that autophosphorylation of numerous residues flanking S293 collectively contribute to establishing a high-affinity binding site for SCF(Slimb). Taken together, our findings suggest that Plk4 directly generates its own phosphodegron and can do so without the assistance of an additional kinase(s).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Centriolos/metabolismo , Drosophila/citología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Ubiquitina-Proteína Ligasas/genética
19.
J Cell Biol ; 201(1): 49-63, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23530065

RESUMEN

Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCF(Slimb) ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCF(Slimb) function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCF(Slimb)-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Complejos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Proteína A Centromérica , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Histonas/genética , Histonas/metabolismo , Interfase/fisiología , Complejos Multiproteicos/genética , Membrana Nuclear/genética , Fosforilación/fisiología , Ubiquitina-Proteína Ligasas/genética
20.
Structure ; 20(11): 1905-17, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23000383

RESUMEN

Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1-3, Plk4 possesses a unique central region called the "cryptic polo box." Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem homodimerized polo boxes, PB1-PB2, that form a unique winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.


Asunto(s)
Centriolos , Proteínas Serina-Treonina Quinasas/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA