Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Cell Environ ; 47(8): 2936-2953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38629324

RESUMEN

Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Luz , Oryza , Fotosíntesis , Brotes de la Planta , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Oryza/fisiología , Fotosíntesis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de la radiación , Brotes de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Dióxido de Carbono/metabolismo , Fotoperiodo , Biomasa , Transcriptoma , Luz Roja
2.
Plant Physiol ; 184(4): 2137-2153, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051265

RESUMEN

Plants detect proximity of competitors through reduction in the ratio between red and far-red light that triggers the shade avoidance syndrome, inducing responses such as accelerated shoot elongation and early flowering. Shade avoidance is regulated by PHYTOCHROME INTERACTING FACTORs, a group of basic helix-loop-helix (bHLH) transcription factors. Another (b)HLH protein, KIDARI (KDR), which is non-DNA-binding, was identified in de-etiolation studies and proposed to interact with LONG HYPOCOTYL IN FAR-RED1 (HFR1), a (b)HLH protein that inhibits shade avoidance. Here, we established roles of KDR in regulating shade avoidance in Arabidopsis (Arabidopsis thaliana) and investigated how KDR regulates the shade avoidance network. We showed that KDR is a positive regulator of shade avoidance and interacts with several negative growth regulators. We identified KDR interactors using a combination of yeast two-hybrid screening and dedicated confirmations with bimolecular fluorescence complementation. We demonstrated that KDR is translocated primarily to the nucleus when coexpressed with these interactors. A genetic approach confirmed that several of these interactions play a functional role in shade avoidance; however, we propose that KDR does not interact with HFR1 to regulate shade avoidance. Based on these observations, we propose that shade avoidance is regulated by a three-layered gas-and-brake mechanism of bHLH protein interactions, adding a layer of complexity to what was previously known.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell ; 29(2): 331-344, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28138015

RESUMEN

Plants growing at high densities elongate their shoots to reach for light, a response known as the shade avoidance syndrome (SAS). Phytochrome-mediated detection of far-red light reflection from neighboring plants activates growth-promoting molecular pathways leading to SAS However, it is unknown how plants that complete their life cycle in the forest understory and are shade tolerant prevent SAS when exposed to shade. Here, we show how two wild Geranium species from different native light environments regulate contrasting responses to light quality cues. A comparative RNA sequencing approach unveiled the molecular underpinnings of their contrasting growth responses to far-red light enrichment. It also identified differential phytochrome control of plant immunity genes and confirmed that far-red enrichment indeed contrastingly affects resistance against Botrytis cinerea between the two species. Furthermore, we identify a number of candidate regulators of differential shade avoidance. Three of these, the receptor-like kinases FERONIA and THESEUS1 and the non-DNA binding bHLH protein KIDARI, are functionally validated in Arabidopsis thaliana through gene knockout and/or overexpression studies. We propose that these components may be associated with either showing or not showing shade avoidance responses.


Asunto(s)
Brotes de la Planta/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Botrytis , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Geranium/crecimiento & desarrollo , Geranium/microbiología , Geranium/fisiología , Geranium/efectos de la radiación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , Brotes de la Planta/efectos de la radiación , Análisis de Secuencia de ARN , Especificidad de la Especie , Estrés Fisiológico , Transcriptoma
4.
Physiol Plant ; 169(3): 312-324, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32053251

RESUMEN

Shade is a potential threat to many plant species. When shade-intolerant plants detect neighbours, they elongate their stems and leaves in an effort to maximise their light capture. This developmental programme, known as 'shade-avoidance' is tightly controlled by specialised photoreceptors and a suite of transcriptional regulators. The basic helix-loop-helix (bHLH) family of transcription factors are particularly important for shade-induced elongation. In recent years, it has become apparent that many members of this family heterodimerise and that together they form a complex regulatory network. This review summarises recent work into the structure of the bHLH network and how it regulates elongation growth. In addition to this, we highlight how photoreceptors modulate the function of the network via direct interaction with transcription factors. It is hoped that the information integrated in this review will provide a useful theoretical framework for future studies on the molecular basis of shade-avoidance in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz
5.
Nat Commun ; 15(1): 8489, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353942

RESUMEN

Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulación de la Expresión Génica de las Plantas , Luz , Nitratos , Fitocromo , Raíces de Plantas , Transducción de Señal , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Nitratos/metabolismo , Citocininas/metabolismo , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fitocromo/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Zeatina/metabolismo , Zeatina/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Nat Commun ; 14(1): 5827, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730832

RESUMEN

Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.


Asunto(s)
Arabidopsis , Percepción del Tacto , Calcio , Tacto , Arabidopsis/genética , Hojas de la Planta
7.
Plant Direct ; 2(8): e00066, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31245741

RESUMEN

Plants growing in high densities experience a reduced red (R) to far-red (FR) light ratio and shade-intolerant species respond with accelerated elongation growth to reach the top of the canopy: the shade avoidance syndrome (SAS). FR-enriched light inactivates phytochrome photoreceptors, which results in subsequent action of several plant hormones regulating growth. SAS is adaptive for shade-intolerant plants, but is suppressed in shade-tolerant plant species. Inspired by a previously published transcriptome analysis, we use two species of the genus Geranium here to study the involvement of auxin, brassinosteroids (BRs), and gibberellins (GAs) in supplemental FR-induced elongation growth. G. pyrenaicum, a shade-avoiding species, strongly induces auxin and gibberellin levels, but not BR, in elongating petioles. We show that, in this species, FR light perception, hormone synthesis, and growth are local and restricted to the petiole, and not the leaf lamina. Using chemical hormone inhibitors, we confirm the essential role of auxin and GAs in supplemental FR-induced elongation growth. Shade-tolerant G. robertianum does not display the change in hormone levels upon FR light enrichment, resulting in the lack of a shade avoidance response.

8.
PLoS One ; 10(8): e0136365, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308527

RESUMEN

Anthocyanins are water-soluble polyphenolic compounds with a high nutraceutical value. Despite the fact that cultivated tomato varieties do not accumulate anthocyanins in the fruit, the biosynthetic pathway can be activated in the vegetative organs by several environmental stimuli. Little is known about the molecular mechanisms regulating anthocyanin synthesis in tomato. Here, we carried out a molecular and functional characterization of two genes, SlAN2 and SlANT1, encoding two R2R3-MYB transcription factors. We show that both can induce ectopic anthocyanin synthesis in transgenic tomato lines, including the fruit. However, only SlAN2 acts as a positive regulator of anthocyanin synthesis in vegetative tissues under high light or low temperature conditions.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Frío , Genotipo , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA