Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 146(9): 699-714, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862102

RESUMEN

BACKGROUND: Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS: We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS: We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS: These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras , Insuficiencia Cardíaca , Proteínas Musculares , ARN Largo no Codificante , Animales , Arritmias Cardíacas , Proteínas Portadoras/genética , Catecolaminas , Corazón/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Largo no Codificante/genética
2.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961489

RESUMEN

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteómica , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Ventrículos Cardíacos , Modelos Animales de Enfermedad , Hipoxia , Remodelación Ventricular , Función Ventricular Derecha , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/complicaciones
3.
Circulation ; 143(5): 427-437, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201741

RESUMEN

BACKGROUND: Major gaps exist in the routine initiation and dose up-titration of guideline-directed medical therapies (GDMT) for patients with heart failure with reduced ejection fraction. Without novel approaches to improve prescribing, the cumulative benefits of heart failure with reduced ejection fraction treatment will be largely unrealized. Direct-to-consumer marketing and shared decision making reflect a culture where patients are increasingly involved in treatment choices, creating opportunities for prescribing interventions that engage patients. METHODS: The EPIC-HF (Electronically Delivered, Patient-Activation Tool for Intensification of Medications for Chronic Heart Failure with Reduced Ejection Fraction) trial randomized patients with heart failure with reduced ejection fraction from a diverse health system to usual care versus patient activation tools-a 3-minute video and 1-page checklist-delivered electronically 1 week before, 3 days before, and 24 hours before a cardiology clinic visit. The tools encouraged patients to work collaboratively with their clinicians to "make one positive change" in heart failure with reduced ejection fraction prescribing. The primary endpoint was the percentage of patients with GDMT medication initiations and dose intensifications from immediately preceding the cardiology clinic visit to 30 days after, compared with usual care during the same period. RESULTS: EPIC-HF enrolled 306 patients, 290 of whom attended a clinic visit during the study period: 145 were sent the patient activation tools and 145 were controls. The median age of patients was 65 years; 29% were female, 11% were Black, 7% were Hispanic, and the median ejection fraction was 32%. Preclinic data revealed significant GDMT opportunities, with no patients on target doses of ß-blocker, sacubitril/valsartan, and mineralocorticoid receptor antagonists. From immediately preceding the cardiology clinic visit to 30 days after, 49.0% in the intervention and 29.7% in the control experienced an initiation or intensification of their GDMT (P=0.001). The majority of these changes were made at the clinician encounter itself and involved dose uptitrations. There were no deaths and no significant differences in hospitalization or emergency department visits at 30 days between groups. CONCLUSIONS: A patient activation tool delivered electronically before a cardiology clinic visit improved clinician intensification of GDMT. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03334188.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico/efectos de los fármacos , Anciano , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Proc Natl Acad Sci U S A ; 116(2): 556-565, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584088

RESUMEN

Mutations in lysosomal-associated membrane protein 2 (LAMP-2) gene are associated with Danon disease, which often leads to cardiomyopathy/heart failure through poorly defined mechanisms. Here, we identify the LAMP-2 isoform B (LAMP-2B) as required for autophagosome-lysosome fusion in human cardiomyocytes (CMs). Remarkably, LAMP-2B functions independently of syntaxin 17 (STX17), a protein that is essential for autophagosome-lysosome fusion in non-CMs. Instead, LAMP-2B interacts with autophagy related 14 (ATG14) and vesicle-associated membrane protein 8 (VAMP8) through its C-terminal coiled coil domain (CCD) to promote autophagic fusion. CMs derived from induced pluripotent stem cells (hiPSC-CMs) from Danon patients exhibit decreased colocalization between ATG14 and VAMP8, profound defects in autophagic fusion, as well as mitochondrial and contractile abnormalities. This phenotype was recapitulated by LAMP-2B knockout in non-Danon hiPSC-CMs. Finally, gene correction of LAMP-2 mutation rescues the Danon phenotype. These findings reveal a STX17-independent autophagic fusion mechanism in human CMs, providing an explanation for cardiomyopathy in Danon patients and a foundation for targeting defective LAMP-2B-mediated autophagy to treat this patient population.


Asunto(s)
Autofagosomas/metabolismo , Enfermedad por Depósito de Glucógeno de Tipo IIb/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Técnicas de Inactivación de Genes , Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Enfermedad por Depósito de Glucógeno de Tipo IIb/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Lisosomas/genética , Lisosomas/patología , Miocitos Cardíacos/patología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
5.
J Mol Cell Cardiol ; 153: 44-59, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359755

RESUMEN

Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-ß) inhibition efficiently promote reprogramming. However, the mechanisms by which TGF-ß blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-ß signaling regulates the interaction between GATA4 and JMJD3. TGF-ß activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) that is associated with congenital heart disease exhibits reduced binding to JMJD3 and impairs cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-ß pathway activation impairs cardiac gene programming, in part by interfering with GATA4-JMJD3 interactions.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Miocitos Cardíacos/citología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Metilación de ADN , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Histonas/química , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo
6.
Am Heart J ; 229: 144-155, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866454

RESUMEN

BACKGROUND: Heart failure with reduced ejection fraction (HFrEF) benefits from initiation and intensification of multiple pharmacotherapies. Unfortunately, there are major gaps in the routine use of these drugs. Without novel approaches to improve prescribing, the cumulative benefits of HFrEF treatment will be largely unrealized. Direct-to-consumer marketing and shared decision making reflect a culture where patients are increasingly involved in treatment choices, creating opportunities for prescribing interventions that engage patients. HYPOTHESIS: Encouraging patients to engage providers in HFrEF prescribing decisions will improve the use of guideline-directed medical therapies. DESIGN: The Electronically delivered, Patient-activation tool for Intensification of Chronic medications for Heart Failure with reduced ejection fraction (EPIC-HF) trial randomizes patients with HFrEF to usual care versus patient-activation tools-a 3-minute video and 1-page checklist-delivered prior to cardiology clinic visits that encourage patients to work collaboratively with their clinicians to intensify HFrEF prescribing. The study assesses the effectiveness of the EPIC-HF intervention to improve guideline-directed medical therapy in the month after its delivery while using an implementation design to also understand the reach, adoption, implementation, and maintenance of this approach within the context of real-world care delivery. Study enrollment was completed in January 2020, with a total 305 patients. Baseline data revealed significant opportunities, with <1% of patients on optimal HFrEF medical therapy. SUMMARY: The EPIC-HF trial assesses the implementation, effectiveness, and safety of patient engagement in HFrEF prescribing decisions. If successful, the tool can be easily disseminated and may inform similar interventions for other chronic conditions.


Asunto(s)
Toma de Decisiones Conjunta , Insuficiencia Cardíaca , Participación del Paciente , Pautas de la Práctica en Medicina , Volumen Sistólico , Adulto , Femenino , Mal Uso de los Servicios de Salud , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/psicología , Humanos , Intervención basada en la Internet , Masculino , Participación del Paciente/métodos , Participación del Paciente/psicología , Relaciones Médico-Paciente , Mejoramiento de la Calidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Disfunción Ventricular Izquierda/diagnóstico
7.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L542-50, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26747780

RESUMEN

Interleukin-18 (IL-18), a proinflammatory cytokine, has been implicated in pathologic left ventricular hypertrophy and is elevated in plasma of heart failure patients. However, IL-18 blockade strategies have been conflicting. The purpose of these experiments was to determine whether genetic ablation of IL-18 would protect mice against hypobaric hypoxia (HH)-induced right ventricular (RV) hypertrophy, a condition in which chamber-specific inflammation is prominent. We hypothesized that IL-18 knockout (KO) mice would be protected while wild-type (WT) mice would demonstrate RV hypertrophy in response to HH exposure. KO and WT mice were exposed to HH for 7 wk, and control mice were exposed to normoxic ambient air. Following echocardiography, the RV was dissected and flash-frozen for biochemical analyses. HH exposure increased IL-18 mRNA (P = 0.08) in RV from WT mice. Genetic ablation of IL-18 mildly attenuated RV hypertrophy as assessed by myocyte size. However, IL-18 KO mice were not protected against HH-induced organ-level remodeling, as evidenced by higher RV weights, elevated RV systolic pressure, and increased RV anterior wall thickness compared with normoxic KO mice. These RV changes were similar to those seen in HH-exposed WT mice. Compensatory upregulation of other proinflammatory cytokines IL-2 and stromal cell-derived factor-1 was seen in the HH-KO animals, suggesting that activation of parallel inflammatory pathways might mitigate the effect of IL-18 KO. These data suggest targeted blockade of IL-18 alone is not a viable therapeutic strategy in this model.


Asunto(s)
Hipertrofia Ventricular Derecha/genética , Hipoxia/complicaciones , Interleucina-18/genética , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Expresión Génica , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Interleucina-18/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Procesamiento Proteico-Postraduccional , Remodelación Ventricular
8.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L158-67, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25416385

RESUMEN

Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria.


Asunto(s)
Bovinos , Modelos Animales de Enfermedad , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/fisiopatología , Mitocondrias/metabolismo , Disfunción Ventricular Derecha/patología , Animales , Variaciones en el Número de Copia de ADN , Complejo I de Transporte de Electrón/metabolismo , Transportador de Glucosa de Tipo 4/biosíntesis , Insuficiencia Cardíaca/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Masculino , Mitocondrias/genética , Fosfofructoquinasa-1/biosíntesis , Proteína Quinasa C/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Función Ventricular Derecha
9.
Circ Res ; 110(5): 739-48, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22282194

RESUMEN

RATIONALE: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. OBJECTIVE: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. METHODS AND RESULTS: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. CONCLUSIONS: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Músculo Liso Vascular/citología , Remodelación Ventricular/efectos de los fármacos , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Músculo Liso Vascular/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología
10.
Am J Physiol Heart Circ Physiol ; 304(12): H1644-50, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23564307

RESUMEN

Human heart failure has been associated with a low level of thin-filament protein phosphorylation and an increase in calcium sensitivity of contraction relative to both "control" human heart tissue and tissue from small animal models. However, diverse strategies of human tissue procurement and the reliance on tissue obtained from subjects with end-stage heart failure suggest this may be an incomplete characterization. Therefore, we evaluated cardiac left ventricular (LV) biopsy samples from patients with aortic stenosis undergoing valve replacement who presented either with LV hypertrophy and preserved systolic function (Hyp) or with LV dilation and reduced ejection fraction (Dil). In Hyp, total troponin I (TnI) phosphorylation was markedly increased and myosin light chain 2 (MLC2) phosphorylation was unchanged relative to a control group of patients with normal LV function. Conversely, in Dil, total TnI phosphorylation was significantly reduced compared with control subjects and MLC2 phosphorylation was increased. Site-specific analysis of TnI phosphorylation revealed phenotype-specific differences such that Hyp samples demonstrated significant increases in phosphorylation at serine 22/23 and Dil samples had significant decreases at serine 43. The ratio of phosphorylation at the two sites was biased toward serine 22/23 in Hyp and toward serine 43/45 in Dil. Western blot analysis showed that protein phosphatase-1 was reduced in Hyp and protein phosphatase-2 was reduced in Dil. These data suggest that posttranslational modifications of sarcomeric proteins, both singly and in combination, are stage specific. Defining these changes in progressive heart disease may provide important diagnostic and treatment information.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Miosinas Cardíacas/metabolismo , Cardiomegalia/metabolismo , Ventrículos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fenotipo , Troponina I/metabolismo , Anciano , Estenosis de la Válvula Aórtica/patología , Biopsia , Cardiomegalia/patología , Estudios de Casos y Controles , Femenino , Expresión Génica , Ventrículos Cardíacos/patología , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Serina/metabolismo
11.
JACC Basic Transl Sci ; 8(9): 1043-1056, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791310

RESUMEN

Left ventricular reverse remodeling in heart failure is associated with improved clinical outcomes. However, the molecular features that drive this process are poorly defined. Left ventricular assist devices (LVADs) are the therapy associated with the greatest reverse remodeling and lead to partial myocardial recovery in most patients. In this study, we examined whether autophagy may be implicated in post-LVAD reverse remodeling. We found expression of key autophagy factors increased post-LVAD, while autophagic substrates decreased. Autolysosome numbers increased post-LVAD, further indicating increased autophagy. These findings support the conclusion that mechanical unloading activates autophagy, which may underly the reverse remodeling observed.

12.
Biochem Biophys Res Commun ; 421(3): 431-5, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22503978

RESUMEN

A number of protein signaling mechanisms are known to be involved in the progression of heart failure, yet the mechanism(s) by which the heart fails remains poorly understood. Therefore, we undertook a global approach to this question and used an antibody microarray to identify proteins differentially expressed in dysfunctional right ventricles in a bovine model of heart failure and the results were validated using cardiac tissue from both bovine and human heart failure. We found that protein disulfide isomerase 3, PDIA3, a protein that resides in the lumen of the endoplasmic reticulum, is significantly upregulated in both animal and human models of right and left heart failure. Altered expression of this protein has not previously been described in models of heart failure. In our initial microarray analysis, we found that CSK (c-Src kinase) was among the proteins upregulated in failing bovine ventricle. To further elucidate the role of CSK in heart failure, we studied the expression of its downstream target, Src, and found that Src expression and phosphorylation were markedly upregulated in failing ventricles. However, we also noted a smaller immunologically reactive protein that was only seen in experimental animals. In order to positively identify the smaller, Src-reactive protein, we used 2-dimensional gel electrophoresis and mass spectrophotometry. Surprisingly, we identified this protein as PDIA3, a protein that did not belong to the Src family of proteins. Upon sequence examination we found that PDIA3 contains a short C-terminal sequence with strong homology to Src and that it was this short sequence to which the antibody was generated. PDIA3 participates in MHC class I presentation and is implicated in the progression of valvular dysfunction in rheumatic heart disease, as well as calcium modulation in the sarcoplasmic reticulum. The molecule resides in the lumen of the endoplasmic reticulum and participates in disulfide bond formation during protein folding by interacting with calnexin and calreticulin. This interaction may indirectly effect SERCA (sarco/endoplasmic reticulum Ca(2+)-transport ATPase) activity and by extension contribute to the calcium dysregulation that characterizes progressive heart failure. Further studies are needed to elucidate the role that PDIA3 may play in the progression of heart failure.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Ventrículos Cardíacos/enzimología , Proteína Disulfuro Isomerasas/biosíntesis , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Derecha/enzimología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Presentación de Antígeno , Bovinos , Células Cultivadas , Modelos Animales de Enfermedad , Retículo Endoplásmico/enzimología , Insuficiencia Cardíaca/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Datos de Secuencia Molecular , Análisis por Matrices de Proteínas , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/inmunología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Familia-src Quinasas/inmunología , Familia-src Quinasas/metabolismo
13.
Mol Cell Proteomics ; 9(9): 1804-18, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20445002

RESUMEN

The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method.


Asunto(s)
Proteínas Musculares/aislamiento & purificación , Miocardio/química , Sarcómeros/química , Adulto , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosforilación , Conformación Proteica , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem
14.
Physiol Genomics ; 43(19): 1087-95, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21771878

RESUMEN

Analysis of changes in gene expression is an important means to define molecular differences associated with the phenotypic changes observed in response to myocardial infarction (MI). Several studies in humans or animal models have reported differential miRNA expression in response to MI acutely (animal) or chronically (human). To determine the relative contribution of microRNA (miRNA) and mRNAs to acute and chronic temporal changes in response to MI, mRNA and miRNA expression profiles were performed in three time points post-MI. Changes in mRNA and miRNA expression was analyzed by arrays and confirmed by RT-PCR. Bioinformatic analysis demonstrated that several genes and miRNAs in various pathways are regulated in a temporal or phenotype-specific manner. Furthermore miRNA analyses indicated that miRNAs can target expression of several genes involved in multiple cardiomyopathy-related pathways. Our results suggest that: 1) Differentially regulated miRNAs are predicted to target expression of several genes in multiple biological processes involved in the response to MI; 2) antithetical and compensatory changes in miRNA expression are observed at later disease stages, including antithetical regulation of miR-29, which correlates with the expression of collagen genes, and upregulation of apoptosis-related miRNAs at early stages and antiapoptotic/growth promoting miRNAs at later stages; 3) temporally dependent changes in miRNA and mRNA expression post-MI are generally characterized by dramatic changes acutely postinjury and are normalized as disease progresses; 4) A combinatorial analysis of mRNA and miRNA expression may aid in determining factors involved in compensatory and decompensated responses to cardiac injury.


Asunto(s)
MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , ARN Mensajero/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Am J Physiol Heart Circ Physiol ; 301(3): H832-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21622821

RESUMEN

Right ventricular (RV) failure is one of the strongest predictors of mortality both in the presence of left ventricular decompensation and in the context of pulmonary vascular disease. Despite this, there is a limited understanding of the biochemical and mechanical characteristics of the pressure-overloaded RV at the level of the cardiac myocyte. To better understand this, we studied ventricular muscle obtained from neonatal calves that were subjected to hypobaric atmospheric conditions, which result in profound pulmonary hypertension. We found that RV pressure overload resulted in significant changes in the phosphorylation of key contractile proteins. Total phosphorylation of troponin I was decreased with pressure overload, predominantly reflecting changes at the putative PKA site at Ser(22/23). Similarly, both troponin T and myosin light chain 2 showed a significant decline in phosphorylation. Desmin was unchanged, and myosin-binding protein C (MyBP-C) phosphorylation was apparently increased. However, the apparent increase in MyBP-C phosphorylation was not due to phosphorylation but rather to an increase in MyBP-C total protein. Importantly, these findings were seen in all regions of the RV and were paralleled by reduced Ca(2+) sensitivity with preserved maximal Ca(2+) saturated developed force normalized to cross-sectional area in isolated skinned right ventricular myocyte fragments. No changes in total force or cooperativity were seen. Taken together, these results suggest that RV failure is mechanistically unique from left ventricular failure.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Hipertensión Pulmonar/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Disfunción Ventricular Derecha/metabolismo , Función Ventricular Derecha , Animales , Animales Recién Nacidos , Bovinos , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Ventrículos Cardíacos/metabolismo , Hemodinámica , Oxigenoterapia Hiperbárica , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Contracción Miocárdica , Fosforilación , Índice de Severidad de la Enfermedad , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/fisiopatología , Presión Ventricular
16.
J Muscle Res Cell Motil ; 31(5-6): 309-14, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21184256

RESUMEN

The ability to analyze the biochemical properties of human cardiac tissue is critical both to an understanding of cardiac pathology and also to the development of novel pharmacotherapies. However current strategies for tissue procurement are not uniform and are potentially biased. In this study we contrasted several commonly used approaches for tissue sampling in order to determine their impact on contractile protein biochemistry. Not surprisingly our results show that different tissue handling strategies have the potential to produce a wide variation in the phosphorylation and proteolysis of selected contractile proteins. However this was not uniform: phosphorylation of troponin I (TnI) and myosin light chain 2 (MLC2) varied significantly depending on approach whereas changes in desmin and myosin binding protein C (MyBP-C) were relatively unaffected. Moreover, some strategies increased whereas others reduced TnI phosphorylation, suggesting a dynamic balance between kinase and phosphatase activities. Overall, procurement strategies that involved maintenance of tissue in cardioplegia solution deviated most dramatically from prompt and rapid tissue immersion in liquid nitrogen.


Asunto(s)
Miocardio/química , Miocardio/metabolismo , Obtención de Tejidos y Órganos/métodos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Desmina/química , Desmina/metabolismo , Humanos , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Troponina I/química , Troponina I/metabolismo
17.
Stem Cell Reports ; 16(3): 519-533, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636116

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research. However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease. Here, we sought to develop a simple method that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSC-CMs to model human cardiovascular disease. hiPSC-CMs were cultured in fatty acid-based medium and plated on micropatterned surfaces. These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, sarcomeric maturity, and increased myofibril contractile force. In addition, mature hiPSC-CMs develop pathological hypertrophy, with associated myofibril relaxation defects, in response to either a pro-hypertrophic agent or genetic mutations. The more mature hiPSC-CMs produced by these methods could serve as a useful in vitro platform for characterizing cardiovascular disease.


Asunto(s)
Cardiomiopatía Hipertrófica/fisiopatología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Línea Celular , Células Cultivadas , Medios de Cultivo/química , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miofibrillas/fisiología , Fenilefrina/farmacología , Sarcómeros/fisiología , Análisis de Secuencia de ARN , Transducción de Señal
18.
J Mol Cell Cardiol ; 48(6): 1180-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19799909

RESUMEN

The response of cardiac muscle to an insult such as myocardial infarction includes changes in the expression of numerous signaling proteins and modulation of gene expression, as well as post-translational modifications of existing proteins. Most studies to date have defined these in end-stage cardiac muscle thus obviating consideration of the temporal progression that causes the heart to transition from a compensated to a decompensated phenotype. To explore these transitions, we examined contractile protein biochemistry in a mouse MI model at two early time points: 2 days and 2 weeks post-infarct and at two later time points: 2 and 4 months post-infarct. Phosphorylation of myofilament proteins was analyzed using phosphospecific staining of polyacrylamide gels, and whenever possible, phosphospecific antibodies. Phosphorylation of myosin binding protein c, the myosin regulatory light chain and troponin I were all decreased relative to sham operated animals at both early time points. However, by 2 months, total phosphorylation of all the major myofilament proteins normalized and at both 2 and 4 months, there was a significant increase in troponin I phosphorylation. One-dimensional IEF of troponin I coupled with phospho-specific antibody analysis demonstrated a redistribution of phosphorylation sites with a significant initial decline at the putative PKA sites, Serine 22,23, and a subsequent increase at the putative PKC site, serine 43,45. These data suggest that temporal changes in myofilament protein phosphorylation contribute both to the initial compensatory hyperdynamic response to myocardial infarction and subsequently to the gradual progression to myocardial failure.


Asunto(s)
Infarto del Miocardio/patología , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía/métodos , Hemodinámica , Ratones , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Fenotipo , Fosforilación , Procesamiento Proteico-Postraduccional , Serina/química , Transducción de Señal , Factores de Tiempo
19.
J Muscle Res Cell Motil ; 31(1): 59-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20490629

RESUMEN

We investigated three forms of the Hill equation used to fit force-calcium data from skinned muscle experiments; Two hyperbolic forms that relate force to calcium concentration directly, and a sigmoid form that relates force to the -log(10) of the calcium concentration (pCa). The equations were fit to force-calcium data from 39 cardiac myocytes (up to five myocytes from each of nine mice) and the Hill coefficient and the calcium required for half maximal activation, expressed as a concentration (EC(50)) and as a pCa value (pCa(50)) were obtained. The pCa(50) values were normally distributed and the EC(50) values were found to approximate a log-normal distribution. Monte Carlo simulations confirmed that these distributions were intrinsic to the Hill equation. Statistical tests such as the t-test are robust to moderate levels of departure from normality as seen here, and either EC(50) or pCa(50) may be used to test for significant differences so long as it is kept in mind that ΔEC50 is an additive measure of change and that ΔpCa50 is a ratiometric measure of change. The Hill coefficient was found to be sufficiently log-normally distributed that log-transformed values should be used to test for statistically significant differences.


Asunto(s)
Calcio/metabolismo , Modelos Biológicos , Fuerza Muscular/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Animales , Ratones , Miocitos Cardíacos/citología
20.
JACC Basic Transl Sci ; 5(9): 871-883, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32838074

RESUMEN

Using serial analysis of myocardial gene expression employing endomyocardial biopsy starting material in a dilated cardiomyopathy cohort, we show that mRNA expression of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) cardiac myocyte receptor ACE2 is up-regulated with remodeling and with reverse remodeling down-regulates into the normal range. The proteases responsible for virus-cell membrane fusion were expressed but not regulated with remodeling. In addition, a new candidate for SARS-CoV-2 cell binding and entry was identified, the integrin encoded by ITGA5. Up-regulation in ACE2 in remodeled left ventricles may explain worse outcomes in patients with coronavirus disease 2019 who have underlying myocardial disorders, and counteracting ACE2 up-regulation is a possible therapeutic approach to minimizing cardiac damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA