Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 159(5): 1168-1187, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416953

RESUMEN

The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Algoritmos , Animales , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Descubrimiento de Drogas , Técnicas de Inactivación de Genes , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética , Factores de Virulencia/genética
2.
Antimicrob Agents Chemother ; : e0103724, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324799

RESUMEN

We investigated the mechanism of action of an arylsulfonamide with whole-cell activity against Mycobacterium tuberculosis. We newly synthesized the molecule and confirmed it had activity against both extracellular and intracellular bacilli. The molecule had some activity against HepG2 cells but maintained some selectivity. Bacterial cytological profiling suggested that the mechanism of action was via disruption of cell wall synthesis, with similarities to an inhibitor of the mycolic acid exporter MmpL3. The compound induced expression from the IniB promoter and caused a boost in ATP production but did not induce reactive oxygen species. A mutation in MmpL3 (S591I) led to low-level resistance. Taken together, these data confirm the molecule targets cell wall biosynthesis with MmpL3 as the most probable target.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30323044

RESUMEN

Increased expression of drug efflux pumps and changes in the target enzyme Erg11p are known to contribute to azole resistance in Candida albicans, one of the most prevalent fungal pathogens. Mutations that inactivate ERG3, which encodes sterol Δ5,6-desaturase, also confer in vitro azole resistance. However, it is unclear whether the loss of Erg3p activity is sufficient to confer resistance within the mammalian host, and relatively few erg3 mutants have been reported among azole-resistant clinical isolates. Trailing growth (residual growth in the presence of the azoles) is a phenotype observed with many C. albicans isolates and, in its extreme form, can be mistaken for resistance. The purpose of this study was to determine whether the growth of Erg3p-deficient C. albicans mutants in the presence of the azoles possesses the characteristics of azole resistance or of an exaggerated form of trailing growth. Our results demonstrate that, similar to trailing isolates, the capacity of an erg3Δ/Δ mutant to endure the consequences of azole exposure is at least partly dependent on both temperature and pH. This contrasts with true azole resistance that results from enhanced drug efflux and/or changes in the target enzyme. The erg3Δ/Δ mutant and trailing isolates also appear to sustain significant membrane damage upon azole treatment, further distinguishing them from resistant isolates. However, the insensitivity of the erg3Δ/Δ mutant to azoles is unaffected by the calcineurin inhibitor cyclosporin A, distinguishing it from trailing isolates. In conclusion, the erg3 mutant phenotype is qualitatively and quantitatively distinct from both azole resistance and trailing growth.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Oxidorreductasas/genética , Inhibidores de la Calcineurina/farmacología , Candida albicans/aislamiento & purificación , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Ciclosporina/farmacología , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Oxidorreductasas/deficiencia
4.
Artículo en Inglés | MEDLINE | ID: mdl-30858206

RESUMEN

The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Azoles/farmacología , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Haloperidol/farmacología , Humanos , Morfolinas/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-29712657

RESUMEN

The incidence of invasive fungal infections has risen significantly in recent decades as medical interventions have become increasingly aggressive. These infections are extremely difficult to treat due to the extremely limited repertoire of systemic antifungals, the development of drug resistance, and the extent to which the patient's immune function is compromised. Even when the appropriate antifungal therapies are administered in a timely fashion, treatment failure is common, even in the absence of in vitro microbial resistance. In this study, we screened a small collection of FDA-approved oncolytic agents for compounds that impact the efficacy of the two most widely used classes of systemic antifungals against Candida albicans, Candida glabrata, and Aspergillus fumigatus We have identified several drugs that enhance fungal growth in the presence of azole antifungals and examine the potential that these drugs directly affect fungal fitness, specifically antifungal susceptibility, and may be contributing to clinical treatment failure.


Asunto(s)
Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Azoles/farmacología , Candida/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Antagonismo de Drogas , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Pruebas de Sensibilidad Microbiana , Pirimidinas/farmacología , Sulfonas/farmacología
6.
Eukaryot Cell ; 12(2): 278-87, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243064

RESUMEN

New, more accessible therapies for cryptococcosis represent an unmet clinical need of global importance. We took a repurposing approach to identify previously developed drugs with fungicidal activity toward Cryptococcus neoformans, using a high-throughput screening assay designed to detect drugs that directly kill fungi. From a set of 1,120 off-patent medications and bioactive molecules, we identified 31 drugs/molecules with fungicidal activity, including 15 drugs for which direct antifungal activity had not previously been reported. A significant portion of the drugs are orally bioavailable and cross the blood-brain barrier, features key to the development of a widely applicable anticryptococcal agent. Structural analysis of this set revealed a common chemotype consisting of a hydrophobic moiety linked to a basic amine, features that are common to drugs that cross the blood-brain barrier and access the phagolysosome, two important niches of C. neoformans. Consistent with their fungicidal activity, the set contains eight drugs that are either additive or synergistic in combination with fluconazole. Importantly, we identified two drugs, amiodarone and thioridazine, with activity against intraphagocytic C. neoformans. Finally, the set of drugs is also enriched for molecules that inhibit calmodulin, and we have confirmed that seven drugs directly bind C. neoformans calmodulin, providing a molecular target that may contribute to the mechanism of antifungal activity. Taken together, these studies provide a foundation for the optimization of the antifungal properties of a set of pharmacologically attractive scaffolds for the development of novel anticryptococcal therapies.


Asunto(s)
Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/efectos de los fármacos , Fluconazol/farmacología , Adenilato Quinasa/metabolismo , Amiodarona/farmacología , Animales , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Patentes como Asunto , Fagocitos/microbiología , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Suloctidil/farmacología , Tioridazina/farmacología
7.
ACS Infect Dis ; 10(10): 3692-3698, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39331790

RESUMEN

New drugs and mechanisms of action targeting Mycobacterium tuberculosis are urgently needed to solve the global pandemic of tuberculosis. We previously demonstrated that the 8-hydroxyquinoline series has rapid bactericidal activity against M. tuberculosis. In this work, we determined that the activity of the 8HQ series is potentiated by copper ions and that the activity is dependent on copper since activity was reduced when copper was depleted from the medium. We determined that exposure to 8HQs led to an increase in intracellular copper. The increase in copper ions was specific since we saw no changes for other metal cations (zinc, iron, magnesium, manganese, or calcium). We observed the transient generation of reactive oxygen species after 8HQ exposure which disappeared by 24 h. Inhibition of growth could be partially relieved by scavenging hydroxyl radicals. We excluded the possibility that 8HQs are toxic by DNA intercalation. We screened a panel of hypomorph strains and identified sensitized strains. The pattern of sensitized strains did not suggest a specific target, but metalloenzymes, proteins with Fe-S clusters, and cell envelope biosynthetic enzymes were highlighted. These data suggest that 8HQs do not have a specific intracellular target, but act as copper ionophores, and that the mode of action is via copper-dependent toxicity.


Asunto(s)
Antituberculosos , Cobre , Mycobacterium tuberculosis , Oxiquinolina , Especies Reactivas de Oxígeno , Mycobacterium tuberculosis/efectos de los fármacos , Cobre/química , Cobre/farmacología , Antituberculosos/farmacología , Antituberculosos/química , Oxiquinolina/farmacología , Oxiquinolina/química , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Humanos
8.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 240-250, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36575056

RESUMEN

BACKGROUND: One of the DSM-5 criteria for Alcohol Use Disorder is continued alcohol consumption despite negative consequences. This has been modeled in mice using adulteration of alcohol solution with the bitter tastant quinine. Mice that continue to consume alcohol despite this adulteration are considered aversion resistant. The limited number of studies dissecting the underlying neuronal mechanisms of aversion-resistant drinking behaviors used only male subjects. We have previously shown that female mice are more resistant to quinine adulteration of alcohol than males. Our aim here is to identify potential sex differences in neuronal activation that may underlie this behavior. METHODS: Male and female C57BL/6J mice were allowed continuous access to 20% alcohol in a two-bottle choice procedure. To test aversion-resistance, the alcohol was adulterated with increasing concentrations (0.03, 0.1, and 0.2 mM) of quinine hydrochloride. After consumption rates were calculated, brains were extracted to examine neuronal activation using Fos immunohistochemistry. RESULTS: We found that female mice suppressed their intake to a lesser extent than males when the alcohol solution was adulterated with quinine. Our Fos staining revealed three regions of interest that exhibit a sex difference during quinine-adulterated alcohol drinking: the ventromedial prefrontal cortex (vmPFC), the posterior insular cortex (PIC), and the ventral tegmental area (VTA). Both the vmPFC and the PIC exhibited higher neuronal activation in males during quinine-adulterated alcohol consumption. However, females showed higher Fos activation in the VTA during quinine-adulterated alcohol consumption. CONCLUSIONS: Females more readily exhibit aversion-resistant alcohol intake than their male counterparts and exhibit some differences in neuronal activation patterns. We conclude that there are sex differences in neurocircuitry that may underlie compulsive drinking behaviors.


Asunto(s)
Quinina , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Consumo de Bebidas Alcohólicas , Conducta Compulsiva , Etanol/farmacología , Ratones Endogámicos C57BL , Quinina/farmacología
9.
Microbiol Spectr ; 10(3): e0116122, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35612308

RESUMEN

We previously identified a phenylthiourea series with activity against intracellular Mycobacterium tuberculosis using a high-throughput, high-content assay. We conducted a catalog structure-activity relationship study with a collection of 35 analogs. We identified several thiourea derivatives with excellent potency against intracellular bacteria and good selectivity over eukaryotic cells. Compounds had much lower activity against extracellular bacteria, which was not increased by using cholesterol as the sole carbon source. Compounds were equally active against strains with mutations in QcrB or MmpL3, thereby excluding common, promiscuous targets as the mode of action. The phenylthiourea series represents a good starting point for further exploration to develop novel antitubercular agents. IMPORTANCE Mycobacterium tuberculosis is responsible for the highest number of deaths from a bacterial pathogen, with >1.5 million in 2020. M. tuberculosis is a sophisticated pathogen that can replicate inside immune cells. There is an urgent need for new drugs to combat M. tuberculosis and to shorten therapy from 6 to 24 months. We have identified a series of molecules that inhibit the growth of M. tuberculosis inside macrophages; we tested a number of derivatives to link structural features to biological activity. The compounds are likely to have novel mechanism of action and so could be developed as new agents for drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/química , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Feniltiourea
10.
ACS Infect Dis ; 7(12): 3210-3223, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34786940

RESUMEN

Fungal fatty acid (FA) synthase and desaturase enzymes are essential for the growth and virulence of human fungal pathogens. These enzymes are structurally distinct from their mammalian counterparts, making them attractive targets for antifungal development. However, there has been little progress in identifying chemotypes that target fungal FA biosynthesis. To accomplish this, we applied a whole-cell-based method known as Target Abundance-based FItness Screening using Candida albicans. Strains with varying levels of FA synthase or desaturase expression were grown in competition to screen a custom small-molecule library. Hit compounds were defined as preferentially inhibiting the growth of the low target-expressing strains. Dose-response experiments confirmed that 16 hits (11 with an acyl hydrazide core) differentially inhibited the growth of strains with an altered desaturase expression, indicating a specific chemical-target interaction. Exogenous unsaturated FAs restored C. albicans growth in the presence of inhibitory concentrations of the most potent acyl hydrazides, further supporting the primary mechanism being inhibition of FA desaturase. A systematic analysis of the structure-activity relationship confirmed the acyl hydrazide core as essential for inhibitory activity. This collection demonstrated broad-spectrum activity against Candida auris and mucormycetes and retained the activity against azole-resistant candida isolates. Finally, a preliminary analysis of toxicity to mammalian cells identified potential lead compounds with desirable selectivities. Collectively, these results establish a scaffold that targets fungal FA biosynthesis with a potential for development into novel therapeutics.


Asunto(s)
Candida auris , Candida , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans , Ácidos Grasos , Humanos
12.
mSphere ; 4(3)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118301

RESUMEN

A recent study demonstrated that the insertion of poly-adenosine (poly-A) tracts into an open reading frame can suppress expression of the encoded protein in both prokaryotic and eukaryotic species. Furthermore, the degree of suppression is proportional to the length of the poly-A insertion, which can therefore provide a reliable and predictable means to titrate a specific protein's expression. The goal of this study was to determine if this methodology can be applied to modulate the expression of proteins in the prevalent human fungal pathogen, Candida albicans Insertion of increasing numbers of AAA codons encoding lysine at the N terminus of the C. albicans lanosterol demethylase (Erg11p) progressively diminished expression without significantly reducing the levels of mRNA. This suggests that Erg11p expression was attenuated at the posttranscriptional level. A direct correlation between the number of AAA codons inserted and C. albicans susceptibility to the Erg11p inhibitor fluconazole was also noted, indicating a progressive loss of Erg11p activity. Finally, we constructed a series of C. albicans strains with 3 to 12 AAA codons inserted at the 5' end of the ARO1 gene, which encodes a pentafunctional enzyme catalyzing five sequential steps of the aromatic amino acid biosynthetic pathway. Increasing numbers of AAA codons progressively reduced the growth rate of C. albicans in standard laboratory medium, indicating a progressive loss of ARO biosynthetic activity. These data unequivocally demonstrate the potential utility of the poly-A insertion method to examine the phenotypic consequences of titrating target protein function in C. albicansIMPORTANCE Investigating a protein's functional importance at the whole-organism level usually involves altering its expression level or its specific activity and observing the consequences with respect to physiology or phenotype. Several approaches designed to partially or completely abolish the function of a gene, including its deletion from the genome and the use of systems that facilitate conditional expression, have been widely applied. However, each has significant limitations that are especially problematic in pathogenic microbes when it is desirable to determine if a particular gene is required for infection in an animal model. In this study, we sought to determine if an alternative approach-the insertion of poly-A repeats within the coding sequence of the gene-is sufficient to modulate its function in the prevalent human fungal pathogen C. albicans Our results confirm that this approach enables us to predictably and gradually titrate the expression level of a protein and thus to investigate the phenotypic consequences of various levels of gene/protein function.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Expresión Génica , Mutagénesis Insercional , Poli A/genética , Candida albicans/patogenicidad , Codón/genética , Sistemas de Lectura Abierta , Fenotipo
13.
mSphere ; 4(1)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728284

RESUMEN

Calcium is a critically important secondary messenger of intracellular signal transduction in eukaryotes but must be maintained at low levels in the cytoplasm of resting cells to avoid toxicity. This is achieved by several pumps that actively transport excess cytoplasmic Ca2+ out of the cell across the plasma membrane and into other intracellular compartments. In fungi, the vacuole serves as the major storage site for excess Ca2+, with two systems actively transporting cytoplasmic calcium ions into the vacuole. The H+/Ca2+ exchanger, Vcx1p, harnesses the proton-motive force across the vacuolar membrane (generated by the V-ATPase) to drive Ca2+ transport, while the P-type ATPase Pmc1p uses ATP hydrolysis to translocate Ca2+ into the vacuole. Ca2+-dependent signaling is required for the prevalent human fungal pathogen Candida albicans to endure exposure to the azole antifungals and to cause disease within the mammalian host. The purpose of this study was to determine if the Pmc1p or Vcx1p Ca2+ pumps are required for C. albicans pathogenicity and if these pumps impact antifungal resistance. Our results indicate that Pmc1p is required by C. albicans to transition from yeast to hyphal growth, to form biofilms in vitro, and to cause disease in a mouse model of disseminated infection. Moreover, loss of Pmc1p function appears to enhance C. albicans azole tolerance in a temperature-dependent manner.IMPORTANCE Maintenance of Ca2+ homeostasis is important for fungal cells to respond to a multitude of stresses, as well as antifungal treatment, and for virulence in animal models. Here, we demonstrate that a P-type ATPase, Pmc1p, is required for Candidaalbicans to respond to a variety of stresses, affects azole susceptibility, and is required to sustain tissue invasive hyphal growth and to cause disease in a mouse model of disseminated infection. Defining the mechanisms responsible for maintaining proper Ca2+ homeostasis in this important human pathogen can ultimately provide opportunities to devise new chemotherapeutic interventions that dysregulate intracellular signaling and induce Ca2+ toxicity.


Asunto(s)
Candida albicans/genética , Candida albicans/patogenicidad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Antifúngicos/farmacología , Azoles/farmacología , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candidiasis Invasiva/microbiología , Farmacorresistencia Fúngica , Proteínas Fúngicas , Hifa/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Temperatura , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Virulencia
14.
Virulence ; 8(2): 198-210, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-27459018

RESUMEN

As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.


Asunto(s)
Antifúngicos/química , Antifúngicos/uso terapéutico , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico , Micosis/tratamiento farmacológico , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Reposicionamiento de Medicamentos , Farmacorresistencia Fúngica , Quimioterapia Combinada , Humanos , Micosis/microbiología , Péptidos/uso terapéutico , Extractos Vegetales/uso terapéutico
15.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28989971

RESUMEN

Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein's abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets-lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second-generation target-based whole-cell screening approach that incorporates the principles of both chemical genetics and competitive fitness, which enables the identification of target-specific and physiologically active compounds from a single screen. We have chosen to validate this approach using the important human fungal pathogen Candida albicans with the intention of pursuing novel antifungal targets. However, this approach is broadly applicable and is expected to dramatically reduce the time and resources required to progress from screening hit to lead compound.

16.
PLoS One ; 10(5): e0125927, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26016941

RESUMEN

Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold.


Asunto(s)
Antifúngicos/farmacología , Tamoxifeno/farmacología , Antifúngicos/química , Criptococosis/microbiología , Cryptococcus neoformans/efectos de los fármacos , Antagonistas del Receptor de Estrógeno/química , Antagonistas del Receptor de Estrógeno/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Moduladores Selectivos de los Receptores de Estrógeno , Relación Estructura-Actividad , Tamoxifeno/química
17.
mBio ; 5(1): e00765-13, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24520056

RESUMEN

UNLABELLED: Cryptococcosis is an infectious disease of global significance for which new therapies are needed. Repurposing previously developed drugs for new indications can expedite the translation of new therapies from bench to beside. Here, we characterized the anti-cryptococcal activity and antifungal mechanism of estrogen receptor antagonists related to the breast cancer drugs tamoxifen and toremifene. Tamoxifen and toremifene are fungicidal and synergize with fluconazole and amphotericin B in vitro. In a mouse model of disseminated cryptococcosis, tamoxifen at concentrations achievable in humans combines with fluconazole to decrease brain burden by ~1 log10. In addition, these drugs inhibit the growth of Cryptococcus neoformans within macrophages, a niche not accessible by current antifungal drugs. Toremifene and tamoxifen directly bind to the essential EF hand protein calmodulin, as determined by thermal shift assays with purified C. neoformans calmodulin (Cam1), prevent Cam1 from binding to its well-characterized substrate calcineurin (Cna1), and block Cna1 activation. In whole cells, toremifene and tamoxifen block the calcineurin-dependent nuclear localization of the transcription factor Crz1. A large-scale chemical genetic screen with a library of C. neoformans deletion mutants identified a second EF hand-containing protein, which we have named calmodulin-like protein 1 (CNAG_05655), as a potential target, and further analysis showed that toremifene directly binds Cml1 and modulates its ability to bind and activate Cna1. Importantly, tamoxifen analogs (idoxifene and methylene-idoxifene) with increased calmodulin antagonism display improved anti-cryptococcal activity, indicating that calmodulin inhibition can be used to guide a systematic optimization of the anti-cryptococcal activity of the triphenylethylene scaffold. IMPORTANCE: Worldwide, cryptococcosis affects approximately 1 million people annually and kills more HIV/AIDS patients per year than tuberculosis. The gold standard therapy for cryptococcosis is amphotericin B plus 5-flucytosine, but this regimen is not readily available in regions where resources are limited and where the burden of disease is highest. Herein, we show that molecules related to the breast cancer drug tamoxifen are fungicidal for Cryptococcus and display a number of pharmacological properties desirable for an anti-cryptococcal drug, including synergistic fungicidal activity with fluconazole in vitro and in vivo, oral bioavailability, and activity within macrophages. We have also demonstrated that this class of molecules targets calmodulin as part of their mechanism of action and that tamoxifen analogs with increased calmodulin antagonism have improved anti-cryptococcal activity. Taken together, these results indicate that tamoxifen is a pharmacologically attractive scaffold for the development of new anti-cryptococcal drugs and provide a mechanistic basis for its further optimization.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Sinergismo Farmacológico , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Antifúngicos/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Motivos EF Hand , Unión Proteica , Tamoxifeno/farmacología , Toremifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA