Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Free Radic Biol Med ; 213: 11-18, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218552

RESUMEN

The monitoring of acidosis and hypoxia is crucial because both factors promote cancer progression and impact the efficacy of anti-cancer treatments. A phosphonated tetrathiatriarylmethyl (pTAM) has been previously described to monitor both parameters simultaneously, but the sensitivity to tackle subtle changes in oxygenation was limited. Here, we describe an innovative approach combining the pTAM radical and lithium phthalocyanine (LiPc) crystals to provide sensitive simultaneous measurements of extracellular pH (pHe) and pO2. Both parameters can be measured simultaneously as both EPR spectra do not overlap, with a gain in sensitivity to pO2 variations by a factor of 10. This procedure was applied to characterize the impact of carbogen breathing in a breast cancer 4T1 model as a proof-of-concept. No significant change in pHe and pO2 was observed using pTAM alone, while LiPc detected a significant increase in tumor oxygenation. Interestingly, we observed that pTAM systematically overestimated the pO2 compared to LiPc. In addition, we analyzed the impact of an inhibitor (UK-5099) of the mitochondrial pyruvate carrier (MPC) on the tumor microenvironment. In vitro, the exposure of 4T1 cells to UK-5099 for 24 h induced a decrease in pHe and oxygen consumption rate (OCR). In vivo, a significant decrease in tumor pHe was observed in UK-5099-treated mice, while there was no change for mice treated with the vehicle. Despite the change observed in OCR, no significant change in tumor oxygenation was observed after the UK-5099 treatment. This approach is promising for assessing in vivo the effect of treatments targeting tumor metabolism.


Asunto(s)
Acrilatos , Indoles , Neoplasias , Compuestos Organometálicos , Oxígeno , Ratones , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno/metabolismo , Concentración de Iones de Hidrógeno , Microambiente Tumoral
2.
Metabolites ; 12(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35736489

RESUMEN

Extracellular acidification has been shown to be an important characteristic of invasive tumors, as it promotes invasion and migration but also resistance to treatments. Targeting transporters involved in the regulation of tumor pH constitutes a promising anti-tumor approach, as it would disrupt cellular pH homeostasis and negatively impact tumor growth. In this study, we evaluated the impact of syrosingopine, an inhibitor of MCT1 and MCT4, as a modulator of tumor metabolism and extracellular acidification in human breast cancer (MDA-MB-231) and pharyngeal squamous cell carcinoma (FaDu) cell models. In both models in vitro, we observed that exposure to syrosingopine led to a decrease in the extracellular acidification rate, intracellular pH, glucose consumption, lactate secretion and tumor cell proliferation with an increase in the number of late apoptotic/necrotic cells. However, in vivo experiments using the MDA-MB-231 model treated with a daily injection of syrosingopine did not reveal any significant change in extracellular pH (pHe) (as measured using CEST-MRI) or primary tumor growth. Overall, our study suggests that targeting MCT could lead to profound changes in tumor cell metabolism and proliferation, and it warrants further research to identify candidates without off-target effects.

3.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503089

RESUMEN

(1) Background: The acidosis of the tumor micro-environment may have profound impact on cancer progression and on the efficacy of treatments. In the present study, we evaluated the impact of a treatment with UK-5099, a mitochondrial pyruvate carrier (MPC) inhibitor on tumor extracellular pH (pHe); (2) Methods: glucose consumption, lactate secretion and extracellular acidification rate (ECAR) were measured in vitro after exposure of cervix cancer SiHa cells and breast cancer 4T1 cells to UK-5099 (10 µM). Mice bearing the 4T1 tumor model were treated daily during four days with UK-5099 (3 mg/kg). The pHe was evaluated in vivo using either chemical exchange saturation transfer (CEST)-MRI with iopamidol as pHe reporter probe or 31P-NMR spectroscopy with 3-aminopropylphosphonate (3-APP). MR protocols were applied before and after 4 days of treatment; (3) Results: glucose consumption, lactate release and ECAR were increased in both cell lines after UK-5099 exposure. CEST-MRI showed a significant decrease in tumor pHe of 0.22 units in UK-5099-treated mice while there was no change over time for mice treated with the vehicle. Parametric images showed a large heterogeneity in response with 16% of voxels shifting to pHe values under 7.0. In contrast, 31P-NMR spectroscopy was unable to detect any significant variation in pHe; (4) Conclusions: MPC inhibition led to a moderate acidification of the extracellular medium in vivo. CEST-MRI provided high resolution parametric images (0.44 µL/voxel) of pHe highlighting the heterogeneity of response within the tumor when exposed to UK-5099.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA