Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; : e14301, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801276

RESUMEN

People often modify the shoreline to mitigate erosion and protect property from storm impacts. The 2 main approaches to modification are gray infrastructure (e.g., bulkheads and seawalls) and natural or green infrastructure (NI) (e.g., living shorelines). Gray infrastructure is still more often used for coastal protection than NI, despite having more detrimental effects on ecosystem parameters, such as biodiversity. We assessed the impact of gray infrastructure on biodiversity and whether the adoption of NI can mitigate its loss. We examined the literature to quantify the relationship of gray infrastructure and NI to biodiversity and developed a model with temporal geospatial data on ecosystem distribution and shoreline modification to project future shoreline modification for our study location, coastal Georgia (United States). We applied the literature-derived empirical relationships of infrastructure effects on biodiversity to the shoreline modification projections to predict change in biodiversity under different NI versus gray infrastructure scenarios. For our study area, which is dominated by marshes and use of gray infrastructure, when just under half of all new coastal infrastructure was to be NI, previous losses of biodiversity from gray infrastructure could be mitigated by 2100 (net change of biodiversity of +0.14%, 95% confidence interval -0.10% to +0.39%). As biodiversity continues to decline from human impacts, it is increasingly imperative to minimize negative impacts when possible. We therefore suggest policy and the permitting process be changed to promote the adoption of NI.


Cuantificación del impacto de la futura modificación de la costa sobre la biodiversidad en un estudio de caso de la costa de Georgia, Estados Unidos Resumen Las personas modifican con frecuencia la costa para mitigar la erosión o proteger su propiedad del impacto de las tormentas. Los dos enfoques principales para la modificación son la infraestructura gris (p. ej.: mamparos y malecones) y la infraestructura verde o natural (IN) (p.ej.: costas vivientes). La infraestructura gris es más común que la IN, a pesar de que tiene efectos dañinos sobre los parámetros ambientales, como la biodiversidad. Evaluamos el impacto de la infraestructura gris sobre la biodiversidad y si la adopción de la IN puede mitigar su pérdida. Analizamos la literatura para cuantificar la relación de la infraestructura gris y la IN con la biodiversidad. También desarrollamos un modelo con datos geoespaciales temporales sobre la distribución de los ecosistemas y la modificación de la costa para proyectar la modificación costera en el futuro en nuestra localidad de estudio: la costa de Georgia, Estados Unidos. Aplicamos las relaciones empíricas derivadas de la literatura de los efectos de la infraestructura sobre la biodiversidad a las proyecciones de modificación de la costa para predecir el cambio en la biodiversidad bajo diferentes escenarios de infraestructura gris versus IN. En nuestra área de estudio, que está dominada por marismas y usa infraestructura gris, cuando un poco menos de la mitad de toda la infraestructura costera nueva debería ser IN, las pérdidas previas de biodiversidad a partir de la infraestructura gris podrían mitigarse para 2100 (cambio neto de la biodiversidad de +0.14%, 95% intervalo de confianza ­0.10% a +0.39%). Conforme la biodiversidad siga en declive por el impacto humano, cada vez es más imperativo minimizar el impacto negativo cuando sea posible. Por lo tanto, sugerimos que se modifiquen las políticas y el proceso de permisos para promover la adopción de la IN.

2.
Oecologia ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898336

RESUMEN

Spatial variation in parasitic infection may have many physical and biological drivers. Uncovering these drivers may be especially important for parasites of ecosystem engineers because the engineers are foundational to their communities. Oysters are an important coastal ecosystem engineer that have declined drastically worldwide, in part due to enhanced cases of lethal oyster diseases, such as Dermo and MSX, caused by the protozoan parasites Perkinsus marinus and Haplosporidium nelsoni, respectively. Besides water quality and hydrodynamics, there is little information on how other variables influence the prevalence and intensity of these pathogens in oysters across a regional scale. To examine drivers of spatial variation in these oyster parasites-including host size, local reef properties, and landscape properties-we sampled 24 reefs systematically spread along the coast of Georgia, USA. Across sites, we found universally high prevalence of oysters with at least one of these parasites (91.02% ± 8.89, mean ± SD). Not only are high levels of parasite prevalence potentially problematic for a pivotal ecosystem engineer, but also low spatial variability may limit the explanatory power of variables across a regional scale. Our statistical models explained between 18 and 42% of the variation in spatial patterns of prevalence and intensity of these microparasites. Interestingly, landscape context was a positive predictor of P. marinus, but a negative predictor of H. nelsoni. Overall, our findings suggest that factors driving parasite prevalence and intensity operate across multiple spatial scales, and the same factor can both facilitate and hinder different parasites within the same host species.

3.
PLoS Biol ; 18(11): e3000743, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232311

RESUMEN

Information on parasites and disease in marine ecosystems lags behind terrestrial systems, increasing the challenge of predicting responses of marine host-parasite systems to climate change. However, here I examine several generalizable aspects and research priorities. First, I advocate that quantification and comparison of host and parasite thermal performance curves is a smart approach to improve predictions of temperature effects on disease. Marine invertebrate species are ectothermic and should be highly conducive to this approach given their generally short generation times. Second, in marine systems, shallow subtidal and intertidal areas will experience the biggest temperature swings and thus likely see the most changes to host-parasite dynamics. Third, for some responses like parasite intensity, as long as the lethal limit of the parasite is not crossed, on average, there may be a biological basis to expect temperature-dependent intensification of impacts on hosts. Fourth, because secondary mortality effects and indirect effects of parasites can be very important, we need to study temperature effects on host-parasite dynamics in a community context to truly know their bottom line effects. This includes examining climate-influenced effects of parasites on ecosystem engineers given their pivotal role in communities. Finally, other global change factors, especially hypoxia, salinity, and ocean acidity, covary with temperature change and need to be considered and evaluated when possible for their contributing effects on host-parasite systems. Climate change-disease interactions in nearshore marine environments are complex; however, generalities are possible and continued research, especially in the areas outlined here, will improve our understanding.


Asunto(s)
Enfermedad/etiología , Estuarios/estadística & datos numéricos , Parásitos/fisiología , Animales , Organismos Acuáticos , Cambio Climático , Ecosistema , Interacciones Huésped-Parásitos/fisiología , Océanos y Mares , Temperatura
4.
Ecol Appl ; 33(5): e2770, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36271664

RESUMEN

Despite the ubiquity of coastal infrastructure, it is unclear what factors drive its placement, particularly for water access infrastructure (WAI) that facilitates entry to coastal ecosystems such as docks, piers, and boat landings. The placement of WAI has both ecological and social dimensions, and certain segments of coastal populations may have differential access to water. In this study, we used an environmental justice framework to assess how public and private WAI in South Carolina, USA are distributed with respect to race and income. Using publicly available data from State agencies and the US Census Bureau, we mapped the distribution of these structures across the 301 km of the South Carolina coast. Using spatially explicit analyses with high resolution, we found that census block groups (CBGs) with lower income are more likely to contain public WAI, but racial composition has no effect. Private docks showed the opposite trends, as the abundance of docks is significantly, positively correlated with CBGs that have greater percentages of White residents, while income has no effect. We contend that the racially unequal distribution of docks is likely a consequence of the legacy of Black land loss, especially of waterfront property, throughout the coastal southeast during the past half-century. Knowledge of racially uneven distribution of WAI can guide public policy to rectify this imbalance and support advocacy organizations working to promote public water access. Our work also points to the importance of considering race in ecological research, as the spatial distribution of coastal infrastructure directly affects ecosystems through the structures themselves and regulates which groups access water and what activities they can engage in at those sites.


Asunto(s)
Ecosistema , Navíos , Sudeste de Estados Unidos
5.
J Environ Manage ; 323: 116138, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113289

RESUMEN

Global environmental factors (e.g., extreme weather, climate action failure, natural disasters, human environmental damage) increasingly threaten coastal communities. Shorelines are often hardened (seawalls, bulkheads) to prevent flooding and erosion and protect coastal communities. However, hardened shorelines lead to environmental degradation and biodiversity loss. Developmental pressures that are growing in scale, scope, and complexity necessitate the development of sustainable solutions to work with, rather than against, nature. Such nature-based solutions (NBS) provide protection and improve environmental quality and enhance biodiversity. To further this pressing need into action, the US Army Corps of Engineers (USACE) began the Engineering With Nature (EWN) initiative to balance economic, environmental, and social benefits through collaboration with partners and stakeholders. This work shows how engineering practice can be advanced through structured decision-making and landscape architecture renderings that include ecological sciences and NBS into an integrated approach for enhancing biodiversity in coastal marine environments. This integrated approach can be applied when designing new infrastructure projects or modifying or repairing existing infrastructure. To help communicate designs incorporating NBS, drawings, and renderings showcasing EWN concepts can aid decision-making. Our experiences with implementing EWN in practice have revealed that involving landscape architects can play a crucial role in successful collaboration and lead to solutions that protect coastal communities while preserving or enhancing biodiversity.


Asunto(s)
Biodiversidad , Inundaciones , Conservación de los Recursos Naturales , Ecosistema , Ingeniería
6.
J Phycol ; 57(5): 1403-1410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218439

RESUMEN

Single-gene markers, such as the mitochondrial cox1, microsatellites, and single-nucleotide polymorphisms are powerful methods to describe diversity within and among taxonomic groups and characterize phylogeographic patterns. Large repositories of publicly-available, molecular data can be combined to generate and evaluate evolutionary hypotheses for many species, including algae. In the case of biological invasions, the combination of different molecular markers has enabled the description of the geographic distribution of invasive lineages. Here, we review the phylogeography of the widespread invasive red macroalga Agarophyton vermiculophyllum (synonym Gracilaria vermiculophylla). The cox1 barcoding provided the first description of the invasion history and hinted at a strong genetic bottleneck during the invasion. Yet, more recent microsatellite and SNP genotyping has not found evidence for bottlenecks and instead suggested that genetically diverse inocula arose from a highly diverse source population, multiple invasions, or some mix of these processes. The bottleneck evident from cox1 barcoding likely reflects the dominance of one mitochondrial lineage, and one haplotype in particular, in the northern source populations in Japan. Recent cox1 sequencing of A. vermiculophyllum has illuminated the complexity of phylogeographic structure in its native range of the northwest Pacific Ocean. For example, the western coast of Honshu in the Sea of Japan displays spatial patterns of haplotypic diversity with multiple lineages found together at the same geographic site. By consolidating the genetic data of this species, we clarify the phylogenetic relationships of a well-studied macroalga introduced to virtually every temperate estuary of the Northern Hemisphere.


Asunto(s)
Rhodophyta , Algas Marinas , ADN Mitocondrial , Variación Genética , Repeticiones de Microsatélite , Filogenia , Filogeografía
7.
Proc Natl Acad Sci U S A ; 115(4): 744-749, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311324

RESUMEN

Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Calor/efectos adversos , Parásitos/fisiología , Aclimatación/fisiología , Animales , Cambio Climático , Ecología , Epidemias , Interacciones Huésped-Parásitos/genética , Estadios del Ciclo de Vida/fisiología , Modelos Biológicos , Temperatura
8.
Proc Biol Sci ; 286(1903): 20190673, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31113328

RESUMEN

Free-living species vary substantially in the extent of their spatial distributions. However, distributions of parasitic species have not been comprehensively compared in this context. We investigated which factors most influence the geographical extent of mammal parasites. Using the Global Mammal Parasite Database we analysed 17 818 individual geospatial records on 1806 parasite species (encompassing viruses, bacteria, protozoa, arthropods and helminths) that infect 396 carnivore, ungulate and primate host species. As a measure of the geographical extent of each parasite species we quantified the number and area of world ecoregions occupied by each. To evaluate the importance of variables influencing the summed area of ecoregions occupied by a parasite species, we used Bayesian network analysis of a subset ( n = 866) of the parasites in our database that had at least two host species and complete information on parasite traits. We found that parasites that covered more geographical area had a greater number of host species, higher average phylogenetic relatedness between host species and more sampling effort. Host and parasite taxonomic groups had weak and indirect effects on parasite ecoregion area; parasite transmission mode had virtually no effect. Mechanistically, a greater number of host species probably increases both the collective abundance and habitat breadth of hosts, providing more opportunities for a parasite to have an expansive range. Furthermore, even though mammals are one of the best-studied animal classes, the ecoregion area occupied by their parasites is strongly sensitive to sampling effort, implying mammal parasites are undersampled. Overall, our results support that parasite geographical extent is largely controlled by host characteristics, many of which are subsumed within host taxonomic identity.


Asunto(s)
Ecosistema , Interacciones Huésped-Parásitos , Mamíferos/microbiología , Mamíferos/parasitología , Parásitos/fisiología , Distribución Animal , Animales , Teorema de Bayes , Geografía , Especificidad del Huésped , Interacciones Huésped-Patógeno , Mamíferos/virología , Parásitos/clasificación
9.
Ecol Appl ; 29(6): e01940, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31148283

RESUMEN

The rapid growth of the aquaculture industry to meet global seafood demand offers both risks and opportunities for resource management and conservation. In particular, hatcheries hold promise for stock enhancement and restoration, yet cultivation practices may lead to enhanced variation between populations at the expense of variation within populations, with uncertain implications for performance and resilience. To date, few studies have assessed how production techniques impact genetic diversity and population structure, as well as resultant trait variation in and performance of cultivated offspring. We collaborated with a commercial hatchery to produce multiple cohorts of the eastern oyster (Crassostrea virginica) from field-collected broodstock using standard practices. We recorded key characteristics of the broodstock (male : female ratio, effective population size), quantified the genetic diversity of the resulting cohorts, and tested their trait variation and performance across multiple field sites and experimental conditions. Oyster cohorts produced under the same conditions in a single hatchery varied almost twofold in genetic diversity. In addition, cohort genetic diversity was a significant positive predictor of oyster performance traits, including initial size and survival in the field. Oyster cohorts produced in the hatchery had lower within-cohort genetic variation and higher among-cohort genetic structure than adults surveyed from the same source sites. These findings are consistent with "sweepstakes reproduction" in oysters, even when manually spawned. A readily measured characteristic of broodstock, the ratio of males to females, was positively correlated with within-cohort genetic diversity of the resulting offspring. Thus, this metric may offer a tractable way both to meet short-term production goals for seafood demand and to ensure the capacity of hatchery-produced stock to achieve conservation objectives, such as the recovery of self-sustaining wild populations.


Asunto(s)
Acuicultura , Crassostrea , Animales , Variación Biológica Poblacional , Femenino , Variación Genética , Masculino , Densidad de Población
10.
Ecology ; 99(12): 2751-2762, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30368794

RESUMEN

Invasive ecosystem engineers both positively and negatively affect their recipient ecosystems by generating novel habitats. Many studies have focused on alterations to ecosystem properties and to native species diversity and abundance caused by invasive engineers. However, relatively few studies have documented the extent to which behaviors of native species are affected. The red seaweed Gracilaria vermiculophylla (Rhodophyta) invaded estuaries of the southeastern United States within the last few decades and now provides abundant aboveground vegetative cover on intertidal mudflats that were historically devoid of seaweeds. We hypothesized that G. vermiculophylla would affect the foraging behavior of native shorebirds positively for birds that target seaweed-associated invertebrates or negatively for birds that target prey on or within the sediment now covered with seaweed. Visual surveys of mudflats >1 ha in size revealed that more shorebirds occurred on mudflats with G. vermiculophylla relative to mudflats without G. vermiculophylla. This increased density was consistent across 7 of 8 species, with the one exception being the semipalmated plover Charadrius semipalmatus. A regression-based analysis indicated that while algal presence predicted shorebird density, densities of some bird species depended on sediment composition and infaunal invertebrate densities. At smaller spatial scales (200 m2 and <1 m2 ), experimental removals and additions of G. vermiculophylla and focal observations showed strong variation in behavioral response to G. vermiculophylla among bird species. Birds preferentially foraged in bare mud (e.g., C. semipalmatus), in G. vermiculophylla (e.g., Arenaria interpres), or displayed no preference for either habitat (e.g., Tringa semipalmata). Thus, while the presence of the invasive ecosystem engineer on a mudflat appeared to attract greater numbers of these predators, shorebird species differed in their behavioral responses at the smaller spatial scales that affect their foraging. Our research illuminates the need to account for species identity, individual behavior, and scale when predicting the impacts of invasive species on native communities.


Asunto(s)
Charadriiformes , Ecosistema , Animales , Aves , Especies Introducidas , Invertebrados
11.
Oecologia ; 188(1): 251-262, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948316

RESUMEN

Interactions with resident species can affect the rate that expanding species invade novel areas. These interactions can be antagonistic (biotic resistance), where resident species hinder invasive establishment, or facilitative (biotic assistance), where residents promote invasive establishment. The predominance of resistance or assistance could vary with the abiotic context. We examined how the effects of a resident ecosystem engineer interact with abiotic stress to resist or assist the establishment of an expanding competitor. In Florida salt marshes, native cordgrass, Spartina alterniflora, is an influential ecosystem engineer that, when dead, exerts a legacy effect by forming persistent wrack patches. We examined how the legacy effect of Spartina wrack varies with spatial context and abiotic conditions to influence establishment of the northward-expanding black mangrove, Avicennia germinans. Field surveys documented that Spartina wrack and Avicennia propagules co-occur in the high intertidal zone, and we conducted two outdoor mesocosm experiments to investigate this association. Wrack positively affected propagule establishment when propagules were beneath wrack, but negatively affected establishment when propagules were above wrack. The abiotic tidal regime influences the magnitude of wrack effects by controlling ambient moisture, and the positive and negative effects of wrack were stronger in low moisture conditions that simulated desiccation stress during harsh neap tides. Thus, the same resident engineer can either resist or assist an expanding competitor and the magnitude of these effects depends on abiotic conditions. We propose that under harsh conditions, there is greater scope for an engineer's mediating influence to affect associated species, both positively and negatively.


Asunto(s)
Avicennia , Ecosistema , Florida , Poaceae , Humedales
12.
Ecology ; 98(9): 2241-2247, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722104

RESUMEN

Nonnative species that escape their native-range parasites may benefit not only from reduced infection pathology, but also from relaxed selection on costly immune defenses, promoting reallocation of resources toward growth or reproduction. However, benefits accruing from a reduction in defense could come at the cost of increased infection susceptibility. We conducted common garden studies of the shore crab Hemigrapsus sanguineus from highly parasitized native (Japan) populations and largely parasite-free invasive (USA) populations to test for differences in susceptibility to infection by native-range rhizocephalan parasites, and to explore differences in host resource allocation. Nonnative individuals showed at least 1.8 times greater susceptibility to infection than their native counterparts, and had reduced standing metabolic rates, suggesting that less of their energy was spent on physiological self-maintenance. Our results support an indirect advantage to parasite escape via the relaxation of costly physiological defenses. However, this advantage comes at the cost of heightened susceptibility, a trade-off of parasite escape that is seldom considered.


Asunto(s)
Braquiuros/fisiología , Interacciones Huésped-Parásitos , Animales , Japón , Parásitos
13.
Ecology ; 98(5): 1476, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28273333

RESUMEN

Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy, and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arthropods, and fungi). Here we present an updated version of the Global Mammal Parasite Database, a database of the parasites of wild ungulates (artiodactyls and perissodactyls), carnivores, and primates, and make it available for download as complete flat files. The updated database has more than 24,000 entries in the main data file alone, representing data from over 2700 literature sources. We include data on sampling method and sample sizes when reported, as well as both "reported" and "corrected" (i.e., standardized) binomials for each host and parasite species. Also included are current higher taxonomies and data on transmission modes used by the majority of species of parasites in the database. In the associated metadata we describe the methods used to identify sources and extract data from the primary literature, how entries were checked for errors, methods used to georeference entries, and how host and parasite taxonomies were standardized across the database. We also provide definitions of the data fields in each of the four files that users can download.


Asunto(s)
Sistemas de Administración de Bases de Datos , Mamíferos/parasitología , Parásitos , Animales , Animales Salvajes , Carnívoros , Helmintos , Interacciones Huésped-Parásitos , Humanos
14.
Oecologia ; 183(4): 919-926, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27942863

RESUMEN

Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.


Asunto(s)
Parásitos , Conducta Predatoria , Animales , Braquiuros , Thoracica
15.
Oecologia ; 185(1): 107-117, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28803360

RESUMEN

Although cascading effects of top predators can help structure communities, their influence may vary across habitats that differentially protect prey. Therefore, to understand how and to what degree habitat complexity can affect trophic interactions in adjacent habitats, we used a combination of a broad regional-scale survey, manipulative field trials, and an outdoor mesocosm experiment to quantify predator-prey interaction strengths across four trophic levels. Within estuaries of the southeastern USA, bonnethead sharks (Sphyrna tiburo) hunt blue crabs on mudflats and adjacent oyster reefs, two habitats with vastly different aboveground structure. Using 12-h tethering trials of blue crabs we quantified habitat-dependent loss rates of 37% on reefs and 78% on mudflats. We hypothesized that the sharks' predatory effects on blue crabs would cascade down to release a lower-level mud crab predator, which subsequently would increase juvenile oyster mortality, but that the cascade strength would be habitat-dependent. We experimentally manipulated predator combinations in split-plot mesocosms containing reef and mudflat habitats, and quantified oyster mortality. Bonnetheads exerted strong consumptive and non-consumptive effects on blue crabs, which ceased eating oysters in the sharks' presence. However, mud crabs, regardless of shark and blue crab presence, continued to consume oysters, especially within the structural refuge of the reef where they kept oyster mortality high. Thus, bonnetheads indirectly boosted oyster survival, but only on the mudflat where mud crabs were less active. Our work demonstrates how structural differences in adjacent habitats can moderate trophic cascades, particularly when mesopredators exhibit differential use of structure and different sensitivities to top predators.


Asunto(s)
Braquiuros , Cadena Alimentaria , Ostreidae , Conducta Predatoria , Tiburones , Animales , Estado Nutricional , Sudeste de Estados Unidos
16.
Oecologia ; 183(1): 139-149, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27722800

RESUMEN

Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.


Asunto(s)
Ambiente , Parásitos , Animales , Braquiuros/parasitología , Ecosistema , Interacciones Huésped-Parásitos , Probabilidad
17.
Ecol Lett ; 19(9): 1159-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27353433

RESUMEN

Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.


Asunto(s)
Enfermedades Transmisibles , Interacciones Huésped-Patógeno , Biodiversidad , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/etiología , Enfermedades Transmisibles/transmisión , Enfermedades Transmisibles/veterinaria , Ecología/métodos
18.
Mol Ecol ; 25(16): 3801-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27286564

RESUMEN

Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo-diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid-diploid ratios were slightly diploid-biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft-sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft-sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo-diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo-diplontic species, the long-term eco-evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized.


Asunto(s)
Diploidia , Ecosistema , Genética de Población , Gracilaria/genética , Haploidia , Evolución Biológica , Océano Pacífico
19.
Ecology ; 97(10): 2858-2866, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27859113

RESUMEN

Movement of individuals links the effects of local variation in habitat quality with growth and persistence of populations at the landscape scale. When the populations themselves are linked by interspecific interactions, such as predation, differential movement between habitats may lead to counterintuitive system-wide dynamics. Understanding the interaction between local drivers and dynamics of widely dispersed species is necessary to predict the impacts of habitat fragmentation and degradation, which may be transmitted across habitat boundaries by species' movements. Here we model predator-prey interactions across unaltered and degraded habitat areas, and we explore the additional effects of adaptive habitat choice by predators on the resilience of prey populations. We show how movement between habitats can produce the "bad neighbor effect," in which predators' response to localized habitat degradation causes system-wide loss of prey populations. This effect arises because adaptive foraging results in the concentration of predators in the more productive unaltered habitat, even when this habitat can not support the increased prey mortality. The mechanisms underlying this effect are especially sensitive to prey dispersal rate and adaptive predator behavior.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Dinámica Poblacional
20.
Ecology ; 97(7): 1643-1649, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27859172

RESUMEN

Parasites can impart heavy fitness costs on their hosts. Thus, understanding the spatial and temporal consistency in parasite pressure can elucidate the likeliness of parasites' role as agents of directional selection, as well as revealing variable environmental factors associated with infection risk. We examined spatiotemporal variation in digenetic trematode infection in 18 populations of an intertidal host snail (Littorina littorea) over a 300 km range at an 11-yr interval, more than double the generation time of the snail. Despite a complete turnover in the snail host population, the average change in infection prevalence among populations was <1% over the 11-yr span, and all but three populations remained within 5 percentage points. This consistency of prevalence in each population over time suggests remarkable spatiotemporal constancy in parasite delivery vectors in this system, notably gulls that serve as definitive hosts for the parasites. Thus, despite gulls' high mobility, their habitat usage patterns are ostensibly relatively fixed in space. Importantly, this spatiotemporal consistency also implies that sites where parasites are recruitment limited remain so over time, and likewise, that parasite hotspots stay hot.


Asunto(s)
Caracoles/parasitología , Infecciones por Trematodos/epidemiología , Animales , Interacciones Huésped-Parásitos , Prevalencia , Trematodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA