Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Protoc ; 3(6): e827, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37358215

RESUMEN

Neutrophils are an important part of the innate immune system and among the first cells to respond to infections and inflammation. Responses include chemotaxis towards stimuli, extravasation from the vasculature, and antimicrobial actions such as phagocytosis, granule release, reactive oxygen species (ROS) production, and neutrophil extracellular trap (NET) formation (NETosis). Studying how neutrophils respond to a variety of stimuli, from biomaterial interactions to microbial insults, is therefore an essential undertaking to fully comprehend the immune response. While there are some immortalized cell lines available that recapitulate many neutrophil responses, ex vivo or in vivo studies are required to fully understand the complete range of neutrophil phenotypes. Here we describe two protocols for neutrophil isolation for further ex vivo study: recovery of neutrophils from human peripheral blood, and isolation of neutrophils from the oral cavity. We also discuss an in vivo model of general inflammation with the murine air pouch that can be used to assess numerous parameters of neutrophil and immune activation, including neutrophil recruitment and biological activity. In these protocols, the cells are isolated to allow for a high degree of experimental control. The protocols are relatively straightforward and can be successfully used by labs with no prior primary cell experience. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Neutrophil isolation from human blood Basic Protocol 2: Neutrophil isolation from the oral cavity Basic Protocol 3: Murine air pouch model of general inflammation.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Animales , Ratones , Neutrófilos/metabolismo , Fagocitosis/fisiología , Trampas Extracelulares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo
2.
Cell Chem Biol ; 28(9): 1298-1309.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33848465

RESUMEN

Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/farmacología , Acilación/efectos de los fármacos , Aciltransferasas/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/química , Ácidos Grasos/química , Células HT29 , Humanos , Necroptosis/efectos de los fármacos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA