Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537696

RESUMEN

Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.


Asunto(s)
Colesterol , Neoplasias Endometriales , Gotas Lipídicas , Escualeno-Monooxigenasa , Femenino , Humanos , Línea Celular Tumoral , Colesterol/metabolismo , Colesterol/biosíntesis , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Neoplasias Endometriales/genética , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Gotas Lipídicas/metabolismo , Escualeno-Monooxigenasa/metabolismo , Escualeno-Monooxigenasa/genética , Regulación hacia Arriba
2.
Clin Sci (Lond) ; 138(4): 173-187, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38315575

RESUMEN

Semaglutide is an anti-diabetes and weight loss drug that decreases food intake, slows gastric emptying, and increases insulin secretion. Patients begin treatment with low-dose semaglutide and increase dosage over time as efficacy plateaus. With increasing dosage, there is also greater incidence of gastrointestinal side effects. One reason for the plateau in semaglutide efficacy despite continued low food intake is due to compensatory actions whereby the body becomes more metabolically efficient to defend against further weight loss. Mitochondrial uncoupler drugs decrease metabolic efficiency, therefore we sought to investigate the combination therapy of semaglutide with the mitochondrial uncoupler BAM15 in diet-induced obese mice. Mice were fed high-fat western diet (WD) and stratified into six treatment groups including WD control, BAM15, low-dose semaglutide without or with BAM15, and high-dose semaglutide without or with BAM15. Combining BAM15 with either semaglutide dose decreased body fat and liver triglycerides, which was not achieved by any monotherapy, while high-dose semaglutide with BAM15 had the greatest effect on glucose homeostasis. This study demonstrates a novel approach to improve weight loss without loss of lean mass and improve glucose control by simultaneously targeting energy intake and energy efficiency. Such a combination may decrease the need for semaglutide dose escalation and hence minimize potential gastrointestinal side effects.


Asunto(s)
Ingestión de Energía , Pérdida de Peso , Humanos , Animales , Ratones , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo
3.
Mol Cell ; 57(3): 537-51, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25658205

RESUMEN

Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Difenilamina/análogos & derivados , Difenilamina/farmacología , Dinaminas , GTP Fosfohidrolasas/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Neoplasias Experimentales/metabolismo , Fosforilación , Serina/metabolismo , Proteínas ras/metabolismo
4.
Glycobiology ; 32(7): 588-599, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35312763

RESUMEN

Neuroblastoma is a highly metastatic childhood cancer for which studies indicate an association between protein glycosylation and tumor behavior. However, there is a lack of detailed glycome analysis on neuroblastoma cells that have varying metastatic potential. Furthermore, the impact of the cell culturing mode, i.e. 2-dimensional (2D) versus 3-dimensional (3D) spheroids, on the membrane protein glycome is unknown. To address these gaps in knowledge, we mapped membrane protein N- and O-glycosylation of neuroblastoma cells that have lower invasive and metastatic potential (Stathmin shRNA-expressing cells, StmnSeq2SH, and StmnSeq3SH) compared with control cells (control shRNA-expressing cells, CtrlSH). We showed that the neuroblastoma cells with different migratory and invasive potential underwent drastic changes in their membrane protein N-glycosylation exclusively when cultured in 3D spheroids. We also investigated the impact of 2D and 3D cell culture methods on cellular glycosylation using the neuroblastoma cells and found the cell N-glycome was markedly impacted by the culture method, with the 2D grown cells showing an abundance of oligomannosidic glycans, whereas 3D spheroids expressed more complex type glycans on their membrane proteins. In summary, this study provides the first comprehensive protein glycome profiling of neuroblastoma cells that have varying invasiveness and migratory potential and unravels the distinct membrane glycan features of cells that are grown under 2D versus 3D culture conditions.


Asunto(s)
Neuroblastoma , Línea Celular Tumoral , Niño , Humanos , Proteínas de la Membrana , Neuroblastoma/genética , Neuroblastoma/patología , Polisacáridos , ARN Interferente Pequeño
5.
Circ Res ; 127(7): 877-892, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32564710

RESUMEN

RATIONALE: Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS: To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Aterosclerosis/etiología , Glucemia/metabolismo , Hiperglucemia/complicaciones , Monocitos/metabolismo , Mielopoyesis , Neutrófilos/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/sangre , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Hiperglucemia/sangre , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Monocitos/patología , Neutrófilos/patología , Placa Aterosclerótica , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal
6.
Cell Mol Life Sci ; 78(21-22): 7025-7041, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626204

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Metabolismo Energético/fisiología , Glucosilceramidas/metabolismo , Hígado/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular , Resistencia a Múltiples Medicamentos/fisiología , Glucosiltransferasas/metabolismo , Glucólisis/fisiología , Glicoesfingolípidos/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , Mitocondrias/metabolismo , Transducción de Señal/fisiología
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562868

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer. Low numbers of HCC patients being suitable for liver resection or transplantation and multidrug resistance development during pharmacotherapy leads to high death rates for HCC patients. Understanding the molecular mechanisms of HCC etiology may contribute to the development of novel therapeutic strategies for prevention and treatment of HCC. UDP-glucose ceramide glycosyltransferase (UGCG), a key enzyme in glycosphingolipid metabolism, generates glucosylceramide (GlcCer), which is the precursor for all glycosphingolipids (GSLs). Since UGCG gene expression is altered in 0.8% of HCC tumors, GSLs may play a role in cellular processes in liver cancer cells. Here, we discuss the current literature about GSLs and their abundance in normal liver cells, Gaucher disease and HCC. Furthermore, we review the involvement of UGCG/GlcCer in multidrug resistance development, globosides as a potential prognostic marker for HCC, gangliosides as a potential liver cancer stem cell marker, and the role of sulfatides in tumor metastasis. Only a limited number of molecular mechanisms executed by GSLs in HCC are known, which we summarize here briefly. Overall, the role GSLs play in HCC progression and their ability to serve as biomarkers or prognostic indicators for HCC, requires further investigation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Resistencia a Múltiples Medicamentos , Glucosilceramidas/metabolismo , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Neoplasias Hepáticas/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232772

RESUMEN

Endometrial cancer is the most common gynaecological malignancy in developed countries. One of the largest risk factors for endometrial cancer is obesity. The aim of this study was to determine whether there are differences in the transcriptome of endometrial cancers from obese vs. lean women. Here we investigate the transcriptome of endometrial cancer between obese and lean postmenopausal women using rRNA-depleted RNA-Seq data from endometrial cancer tissues and matched adjacent non-cancerous endometrial tissues. Differential expression analysis identified 12,484 genes (6370 up-regulated and 6114 down-regulated) in endometrial cancer tissues from obese women, and 6219 genes (3196 up-regulated and 3023 down-regulated) in endometrial cancer tissues from lean women (adjusted p-value < 0.1). A gene ontology enrichment analysis revealed that the top 1000 up-regulated genes (by adjusted p-value) were enriched for growth and proliferation pathways while the top 1000 down-regulated genes were enriched for cytoskeleton restructure networks in both obese and lean endometrial cancer tissues. In this study, we also show perturbations in the expression of protein coding genes (HIST1H2BL, HIST1H3F, HIST1H2BH, HIST1H1B, TTK, PTCHD1, ASPN, PRELP, and CDH13) and the lncRNA MBNL1-AS1 in endometrial cancer tissues. Overall, this study has identified gene expression changes that are similar and also unique to endometrial cancers from obese vs. lean women. Furthermore, some of these genes may serve as prognostic biomarkers or, possibly, therapeutic targets for endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Obesidad , ARN Largo no Codificante , Delgadez , Transcriptoma , Biomarcadores/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Obesidad/genética , Obesidad/metabolismo , ARN Largo no Codificante/genética , Delgadez/genética , Delgadez/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077188

RESUMEN

Obesity-related insulin resistance is a highly prevalent and growing health concern, which places stress on the pancreatic islets of Langerhans by increasing insulin secretion to lower blood glucose levels. The glucose transporters GLUT1 and GLUT3 play a key role in glucose-stimulated insulin secretion in human islets, while GLUT2 is the key isoform in rodent islets. However, it is unclear whether other glucose transporters also contribute to insulin secretion by pancreatic islets. Herein, we show that SLC2A6 (GLUT6) is markedly upregulated in pancreatic islets from genetically obese leptin-mutant (ob/ob) and leptin receptor-mutant (db/db) mice, compared to lean controls. Furthermore, we observe that islet SLC2A6 expression positively correlates with body mass index in human patients with type 2 diabetes. To investigate whether GLUT6 plays a functional role in islets, we crossed GLUT6 knockout mice with C57BL/6 ob/ob mice. Pancreatic islets isolated from ob/ob mice lacking GLUT6 secreted more insulin in response to high-dose glucose, compared to ob/ob mice that were wild type for GLUT6. The loss of GLUT6 in ob/ob mice had no adverse impact on body mass, body composition, or glucose tolerance at a whole-body level. This study demonstrates that GLUT6 plays a role in pancreatic islet insulin secretion in vitro but is not a dominant glucose transporter that alters whole-body metabolic physiology in ob/ob mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Obesidad/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos
10.
J Immunol ; 202(6): 1826-1832, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30700586

RESUMEN

The polarization processes for M1 versus M2 macrophages are quite distinct in the context of changes in cellular metabolism. M1 macrophages are highly glycolytic, whereas M2 macrophages require a more oxidative nutrient metabolism. An important part of M1 polarization involves upregulation of the glucose transporter (GLUT) GLUT1 to facilitate increased glucose uptake and glycolytic metabolism; however, the role of other glucose transporters in this process is largely unknown. In surveying the Functional Annotation of the Mammalian Genome and Gene Expression Omnibus Profiles databases, we discovered that the glucose transporter GLUT6 is highly upregulated in LPS-activated macrophages. In our previous work, we have not detected mouse GLUT6 protein expression in any noncancerous tissue; therefore, in this study, we investigated the expression and significance of GLUT6 in bone marrow-derived macrophages from wild-type and GLUT6 knockout C57BL/6 mice. We show that LPS-induced M1 polarization markedly upregulated GLUT6 protein, whereas naive macrophages and IL-4-induced M2 macrophages do not express GLUT6 protein. However, despite strong upregulation of GLUT6 in M1 macrophages, the absence of GLUT6 did not alter M1 polarization in the context of glucose uptake, glycolytic metabolism, or cytokine production. Collectively, these data show that GLUT6 is dispensable for LPS-induced M1 polarization and function. These findings are important because GLUT6 is an anticancer drug target, and this study suggests that inhibition of GLUT6 may not impart detrimental side effects on macrophage function to interfere with their antitumor properties.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas Facilitadoras del Transporte de la Glucosa/inmunología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados
11.
J Enzyme Inhib Med Chem ; 34(1): 728-739, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30822267

RESUMEN

The most challenging issue facing peptide drug development is producing a molecule with optimal physical properties while maintaining target binding affinity. Masking peptides with protecting groups that can be removed inside the cell, produces a cell-permeable peptide, which theoretically can maintain its biological activity. Described are series of prodrugs masked using: (a) O-alkyl, (b) N-alkyl, and (c) acetyl groups, and their binding affinity for Hsp90. Alkyl moieties increased compound permeability, Papp, from 3.3 to 5.6, however alkyls could not be removed by liver microsomes or in-vivo and their presence decreased target binding affinity (IC50 of ≥10 µM). Thus, unlike small molecules, peptide masking groups cannot be predictably removed; their removal is related to the 3-D conformation. O-acetyl groups were cleaved but are labile, increasing challenges during synthesis. Utilising acetyl groups coupled with mono-methylated amines may decrease the polarity of a peptide, while maintaining binding affinity.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Profármacos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Profármacos/química , Profármacos/metabolismo , Relación Estructura-Actividad
12.
Am J Physiol Endocrinol Metab ; 315(2): E286-E293, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29664675

RESUMEN

Glucose transporter 6 (GLUT6) is a member of the facilitative glucose transporter family. GLUT6 is upregulated in several cancers but is not widely expressed in normal tissues. Previous studies have shown that GLUT6 knockdown kills endometrial cancer cells that express elevated levels of the protein. However, whether GLUT6 represents a viable anticancer drug target is unclear because the role of GLUT6 in normal metabolic physiology is unknown. Herein we generated GLUT6 knockout mice to determine how loss of GLUT6 affected whole body glucose homeostasis and metabolic physiology. We found that the mouse GLUT6 ( Slc2a6) gene expression pattern was similar to humans with mRNA found primarily in brain and spleen. CRISPR-Cas9-mediated deletion of Slc2a6 did not alter mouse development, growth, or whole body glucose metabolism in male or female mice fed either a chow diet or Western diet. GLUT6 deletion did not impact glucose tolerance or blood glucose and insulin levels in male or female mice fed either diet. However, compared with wild-type littermate controls, GLUT6 null female mice had a relatively minor decrease in fat accumulation when fed Western diet and had a lower respiratory exchange ratio when fed chow diet. Collectively, these data show that GLUT6 is not a major regulator of whole body metabolic physiology; therefore, GLUT6 inhibition may have minimal adverse effects if targeted for cancer therapy.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/genética , Metabolismo/genética , Metabolismo/fisiología , Adiposidad/genética , Animales , Glucemia/metabolismo , Peso Corporal/genética , Sistemas CRISPR-Cas , Dieta , Metabolismo Energético/genética , Femenino , Genotipo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/genética , Insulina/sangre , Masculino , Ratones , Ratones Noqueados
13.
Gynecol Oncol ; 147(3): 654-662, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29050779

RESUMEN

Endometrial cancer is the most common gynecological malignancy in the developed world. It is the fifth most common cancer and accounts for 4.8% of all cancers in women. Long intergenic non-coding RNAs (lincRNAs), a subclass of long non-coding RNAs, are pervasively transcribed throughout the human genome. OBJECTIVE: LincRNA expression patterns in endometrial cancer compared to normal healthy tissue are poorly characterised. In this study, the lincRNA transcriptome of endometrial cancers and adjacent normal endometrium from the same patients was sequenced and compared with transcriptomes of other gynaecologic malignancies including ovarian and cervical cancers. METHODS: RNA was isolated from malignant and adjacent non-affected endometrial tissue from 6 patients with low grade and stage Type I endometrial cancer. Subsequently, Illumina paired-end RNA sequencing was performed, followed by bioinformatics analysis, to determine differential transcriptome expression patterns. RESULTS: LINC00958 was upregulated in all three cancers, and four lincRNAs including LINC01480, LINC00645, LINC00891 and LINC00702 demonstrated exquisite specificity for malignant endometrium compared to normal endometrium while also distinguishing endometrial cancer from ovarian and cervical cancers. Furthermore, LINC01480 has features required to express a micropeptide. CONCLUSIONS: The lincRNAs, characterised in this study, represent high priority genes to be tested for functional significance in the pathogenesis and/or progression of endometrial cancer. Furthermore, lincRNAs have potential to be released into the bloodstream and therefore the four lincRNAs identified here may represent biomarkers for early detection of endometrial cancer without biopsy.


Asunto(s)
Neoplasias Endometriales/genética , ARN Largo no Codificante/genética , Estudios de Casos y Controles , Neoplasias Endometriales/patología , Femenino , Humanos , Estadificación de Neoplasias , Oligopéptidos/biosíntesis , Oligopéptidos/genética , Especificidad de Órganos , ARN Neoplásico/genética , Transcriptoma , Regulación hacia Arriba , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
14.
J Pathol ; 239(1): 3-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26880235

RESUMEN

Fatty liver, also termed hepatic steatosis or fatty liver disease, is a condition characterized by excess fat accumulation in the liver. Common causes of fatty liver include obesity, ageing, medications, genetic disorders, viral hepatitis, excess alcohol or toxins. This diversity in pathogenesis is matched by an equally diverse spectrum of consequences, whereby some individuals remain asymptomatic yet others progress through a series of inflammatory, fibrotic and metabolic disorders that can lead to liver failure, cancer or diabetes. Current treatment approaches for fatty liver do not differ by disease aetiology and primarily involve weight loss strategies or management of co-morbidities. In a recent paper published in this journal, Urasaki et al used capillary isoelectric focusing (cIEF) to create profiles of protein post-translational modifications that distinguish four different models of fatty liver in mice. Importantly, this new cIEF approach has the potential to provide rapid individualized diagnosis of fatty liver pathogenesis that may enable more accurate and personalized treatment strategies. Further testing and optimization of cIEF as a diagnostic screening tool in humans is warranted.


Asunto(s)
Hígado Graso/metabolismo , Ensayos Analíticos de Alto Rendimiento , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteómica/métodos , Animales
15.
Biochem J ; 471(2): 243-53, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26283546

RESUMEN

Null mutations of the Niemann-Pick type C1 (NPC1) gene cause NPC disease, a lysosomal storage disorder characterized by cholesterol accumulation in late endosomes (LE) and lysosomes (Ly). Nascent or mutated NPC1 is degraded through the ubiquitin-proteasome pathway, but how NPC1 degradation is regulated remains currently unknown. In the present study, we demonstrated a link between NPC1 degradation and the Akt (protein kinase B)/mTOR [mammalian (or mechanistic) target of rapamycin] signalling pathway in cervical cancer cell lines. We provided evidence that activated Akt/mTOR pathway increased NPC1 degradation by ∼50% in C33A cells when compared with SiHa or HeLa cells. NPC1 degradation in C33A cells was reversed when Akt/mTOR activation was blocked by specific inhibitors or when mTORC1 (mTOR complex 1) was disrupted by regulatory associated protein of mTOR (Raptor) knockdown. Importantly, inhibition of the Akt/mTOR pathway led to decreased NPC1 ubiquitination in C33A cells, pointing to a role of Akt/mTOR in the proteasomal degradation of NPC1. Moreover, we found that NPC1 depletion in several cancer cell lines inhibited cell proliferation and migration. Our results uncover Akt as a key regulator of NPC1 degradation and link NPC1 to cancer cell proliferation and migration.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Portadoras/genética , Movimiento Celular/genética , Proliferación Celular/genética , Colesterol/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Glicoproteínas de Membrana/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteína Niemann-Pick C1 , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
16.
J Hepatol ; 62(3): 599-606, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25450719

RESUMEN

BACKGROUND & AIMS: Mice exposed to the hepatocellular carcinogen diethylnitrosamine at 2 weeks of age have a high risk of developing primary liver tumors later in life. Previous studies have demonstrated that diethylnitrosamine-treated mice have increased tumor burden when fed an obesigenic "Western" diet rich in lard fat and sugar. However, the role of dietary fats vs. sugars in the promotion of liver cancer is poorly understood. The aim of this study was to determine how altering dietary fats vs. sugars affects tumor burden in the diethylnitrosamine model. METHODS: C57BL/6N mice were treated with diethylnitrosamine at 2 weeks of age and, from 6 to 32 weeks of age, fed one of five diets that differed in fat and sugar content, including normal chow, ketogenic, and Western diets. RESULTS: Mice fed sugar-rich diets had the greatest tumor burden irrespective of dietary fat content. In contrast, mice fed a high-fat low-sugar diet had the least tumor burden despite obesity and glucose intolerance. When evaluated as independent variables, tumor burden was positively correlated with hepatic fat accumulation, postprandial insulin, and liver IL-6, and inversely correlated with serum adiponectin. In contrast, tumor burden did not correlate with adiposity, fasting insulin, or glucose intolerance. Furthermore, mice fed high sugar diets had lower liver expression of p21 and cleaved caspase-3 compared to mice fed low sugar diets. CONCLUSIONS: These data indicate that dietary sugar intake contributes to liver tumor burden independent of excess adiposity or insulin resistance in mice treated with diethylnitrosamine.


Asunto(s)
Carbohidratos de la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Dietilnitrosamina/toxicidad , Neoplasias Hepáticas Experimentales/etiología , Adipoquinas/sangre , Adiposidad , Animales , Carcinógenos/toxicidad , Dieta Cetogénica/efectos adversos , Dieta Occidental/efectos adversos , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Femenino , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carga Tumoral
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167029, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38325224

RESUMEN

High fructose diets are associated with an increased risk of liver cancer. Previous studies in mice suggest increased lipogenesis is a key mechanism linking high fructose diets to liver tumour growth. However, these studies administered fructose to mice at supraphysiological levels. The aim of this study was to determine whether liver tumour growth and lipogenesis were altered in mice fed fructose at physiological levels. To test this, we injected male C57BL/6 mice with the liver carcinogen diethylnitrosamine and then fed them diets without fructose or fructose ranging from 10 to 20 % total calories. Results showed mice fed diets with ≥15 % fructose had significantly increased liver tumour numbers (2-4-fold) and total tumour burden (∼7-fold) vs mice fed no-fructose diets. However, fructose-associated tumour burden was not associated with lipogenesis. Conversely, unbiased metabolomic analyses revealed bile acids were elevated in the sera of mice fed a 15 % fructose diet vs mice fed a no-fructose diet. Using a syngeneic ectopic liver tumour model, we show that ursodeoxycholic acid, which decreases systemic bile acids, significantly reduced liver tumour growth in mice fed the 15 % fructose diet but not mice fed a no-fructose diet. These results point to a novel role for systemic bile acids in mediating liver tumour growth associated with a high fructose diet. Overall, our study shows fructose intake at or above normal human consumption (≥15 %) is associated with increased liver tumour numbers and growth and that modulating systemic bile acids inhibits fructose-associated liver tumour growth in mice.


Asunto(s)
Ácidos y Sales Biliares , Neoplasias Hepáticas , Humanos , Ratones , Masculino , Animales , Fructosa/efectos adversos , Ratones Endogámicos C57BL , Neoplasias Hepáticas/inducido químicamente
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166908, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793464

RESUMEN

Metabolic disorders such as type 2 diabetes, fatty liver disease, hyperlipidemia, and obesity commonly co-occur but clinical treatment options do not effectively target all disorders. Calorie restriction, semaglutide, rosiglitazone, and mitochondrial uncouplers have all demonstrated efficacy against one or more obesity-related metabolic disorders, but it currently remains unclear which therapeutic strategy best targets the combination of hyperglycaemia, liver fat, hypertriglyceridemia, and adiposity. Herein we performed a head-to-head comparison of 5 treatment interventions in the female db/db mouse model of severe metabolic disease. Treatments included ∼60 % calorie restriction (CR), semaglutide, rosiglitazone, BAM15, and niclosamide ethanolamine (NEN). Results showed that BAM15 and CR improved body weight and liver steatosis to levels superior to semaglutide, NEN, and rosiglitazone, while BAM15, semaglutide, and rosiglitazone improved glucose tolerance better than CR and NEN. BAM15, CR, semaglutide, and rosiglitazone all had efficacy against hypertriglyceridaemia. These data provide a comprehensive head-to-head comparison of several key treatment strategies for metabolic disease and highlight the efficacy of mitochondrial uncoupling to correct multiple facets of the metabolic disease milieu in female db/db mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Femenino , Niclosamida/uso terapéutico , Rosiglitazona/farmacología , Rosiglitazona/uso terapéutico , Etanolamina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Restricción Calórica , Etanolaminas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
19.
Diabetes ; 73(3): 374-384, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870907

RESUMEN

Excess body fat is a risk factor for metabolic diseases and is a leading preventable cause of morbidity and mortality worldwide. There is a strong need to find new treatments that decrease the burden of obesity and lower the risk of obesity-related comorbidities, including cardiovascular disease and type 2 diabetes. Pharmacologic mitochondrial uncouplers represent a potential treatment for obesity through their ability to increase nutrient oxidation. Herein, we report the in vitro and in vivo characterization of compound SHD865, the first compound to be studied in vivo in a newly discovered class of imidazolopyrazine mitochondrial uncouplers. SHD865 is a derivative of the furazanopyrazine uncoupler BAM15. SHD865 is a milder mitochondrial uncoupler than BAM15 that results in a lower maximal respiration rate. In a mouse model of diet-induced adiposity, 6-week treatment with SHD865 completely restored normal body composition and glucose tolerance to levels like those of chow-fed controls, without altering food intake. SHD865 treatment also corrected liver steatosis and plasma hyperlipidemia to normal levels comparable with chow-fed controls. SHD865 has maximal oral bioavailability in rats and slow clearance in human microsomes and hepatocytes. Collectively, these data identify the potential of imidazolopyrazine mitochondrial uncouplers as drug candidates for the treatment of obesity-related disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Ratones , Ratas , Humanos , Animales , Adiposidad , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/etiología , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
20.
Gene ; 855: 147125, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549426

RESUMEN

The present study has investigated the circular RNA (circRNA) transcriptome of twenty obese and postmenopausal women, recruited in Australia, with endometrial cancer (EC). This paper expands on previous findings which evaluated the circRNA transcriptome of a similar cohort of six women recruited in the United States of America. EC is the most common gynaecological malignancy and the fifth most common cancer in women worldwide with obesity as one of its major risk factors. CircRNAs, a class of non-coding RNAs, are involved in many human diseases including cancer. As such the objective of this study was to investigate the circRNA transcriptome of these twenty women and identify circRNAs of interest. We obtained paired samples (EC and adjacent normal tissue) from the cohort of twenty women. Samples were subjected to ribosomal RNA depletion and sequencing performed using Illumina sequencing technology. CircRNAs were identified through CIRI2 and CIRCexplorer2 and common circRNAs extracted for differential expression with edgeR which met the criteria of counts per million > 0.1 and expressed in ≥ 10. We found that the overall abundance of circRNAs was lower in EC compared to adjacent non-cancerous endometrial tissue. We also identified hotspot genes, genes expressing over 10 distinct circRNA isoforms. There were 82 hotspot genes in normal tissue and 23 hotspot genes in EC. There were 174 significantly differentially expressed circRNAs, of which 172 were down-regulated and 2 were up-regulated in EC. The circRNAs identified from this study may act as diagnostic or prognostic biomarkers for EC in obese women. While the circRNA transcriptome of obesity-related EC has been investigated further work is required to determine their functional significance.


Asunto(s)
Neoplasias Endometriales , Obesidad , ARN Circular , Transcriptoma , Femenino , Humanos , Neoplasias Endometriales/genética , Obesidad/complicaciones , Obesidad/genética , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA