Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 36(12): 1755-1769, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28446510

RESUMEN

Lysosome-mediated autophagy is essential for cellular survival and homeostasis upon nutrient deprivation, but is repressed after feeding. Despite the emerging importance of transcriptional regulation of autophagy by nutrient-sensing factors, the role for epigenetic control is largely unexplored. Here, we show that Small Heterodimer Partner (SHP) mediates postprandial epigenetic repression of hepatic autophagy by recruiting histone demethylase LSD1 in response to a late fed-state hormone, FGF19 (hFGF19, mFGF15). FGF19 treatment or feeding inhibits macroautophagy, including lipophagy, but these effects are blunted in SHP-null mice or LSD1-depleted mice. In addition, feeding-mediated autophagy inhibition is attenuated in FGF15-null mice. Upon FGF19 treatment or feeding, SHP recruits LSD1 to CREB-bound autophagy genes, including Tfeb, resulting in dissociation of CRTC2, LSD1-mediated demethylation of gene-activation histone marks H3K4-me2/3, and subsequent accumulation of repressive histone modifications. Both FXR and SHP inhibit hepatic autophagy interdependently, but while FXR acts early, SHP acts relatively late after feeding, which effectively sustains postprandial inhibition of autophagy. This study demonstrates that the FGF19-SHP-LSD1 axis maintains homeostasis by suppressing unnecessary autophagic breakdown of cellular components, including lipids, under nutrient-rich postprandial conditions.


Asunto(s)
Autofagia , Represión Epigenética , Factores de Crecimiento de Fibroblastos/metabolismo , Histona Demetilasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Hepatocitos/ultraestructura , Histonas/metabolismo , Hígado/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/deficiencia , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo
2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009768

RESUMEN

Electromyogram (EMG) signals have been increasingly used for hand and finger gesture recognition. However, most studies have focused on the wrist and whole-hand gestures and not on individual finger (IF) gestures, which are considered more challenging. In this study, we develop EMG-based hand/finger gesture classifiers based on fixed electrode placement using machine learning methods. Ten healthy subjects performed ten hand/finger gestures, including seven IF gestures. EMG signals were measured from three channels, and six time-domain (TD) features were extracted from each channel. A total of 18 features was used to build personalized classifiers for ten gestures with an artificial neural network (ANN), a support vector machine (SVM), a random forest (RF), and a logistic regression (LR). The ANN, SVM, RF, and LR achieved mean accuracies of 0.940, 0.876, 0.831, and 0.539, respectively. One-way analyses of variance and F-tests showed that the ANN achieved the highest mean accuracy and the lowest inter-subject variance in the accuracy, respectively, suggesting that it was the least affected by individual variability in EMG signals. Using only TD features, we achieved a higher ratio of gestures to channels than other similar studies, suggesting that the proposed method can improve the system usability and reduce the computational burden.


Asunto(s)
Algoritmos , Gestos , Electromiografía , Mano , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
3.
J Biol Chem ; 294(22): 8732-8744, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30996006

RESUMEN

The bile acid (BA) nuclear receptor, farnesoid X receptor (FXR/NR1H4), maintains metabolic homeostasis by transcriptional control of numerous genes, including an intestinal hormone, fibroblast growth factor-19 (FGF19; FGF15 in mice). Besides activation by BAs, the gene-regulatory function of FXR is also modulated by hormone or nutrient signaling-induced post-translational modifications. Recently, phosphorylation at Tyr-67 by the FGF15/19 signaling-activated nonreceptor tyrosine kinase Src was shown to be important for FXR function in BA homeostasis. Here, we examined the role of this FXR phosphorylation in cholesterol regulation. In both hepatic FXR-knockout and FXR-knockdown mice, reconstitution of FXR expression up-regulated cholesterol transport genes for its biliary excretion, including scavenger receptor class B member 1 (Scarb1) and ABC subfamily G member 8 (Abcg5/8), decreased hepatic and plasma cholesterol levels, and increased biliary and fecal cholesterol levels. Of note, these sterol-lowering effects were blunted by substitution of Phe for Tyr-67 in FXR. Moreover, consistent with Src's role in phosphorylating FXR, Src knockdown impaired cholesterol regulation in mice. In hypercholesterolemic apolipoprotein E-deficient mice, expression of FXR, but not Y67F-FXR, ameliorated atherosclerosis, whereas Src down-regulation exacerbated it. Feeding or treatment with an FXR agonist induced Abcg5/8 and Scarb1 expression in WT, but not FGF15-knockout, mice. Furthermore, FGF19 treatment increased occupancy of FXR at Abcg5/8 and Scarb1, expression of these genes, and cholesterol efflux from hepatocytes. These FGF19-mediated effects were blunted by the Y67F-FXR substitution or Src down-regulation or inhibition. We conclude that phosphorylation of hepatic FXR by FGF15/19-induced Src maintains cholesterol homeostasis and protects against atherosclerosis.


Asunto(s)
Colesterol/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Familia-src Quinasas/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ácidos y Sales Biliares/metabolismo , Colesterol/sangre , Regulación hacia Abajo , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Transducción de Señal , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
4.
Gastroenterology ; 156(4): 1052-1065, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30521806

RESUMEN

BACKGROUND & AIMS: The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS: We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS: We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -ß-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS: Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.


Asunto(s)
Colesterol/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Proteínas de Transporte de Membrana/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/análisis , Colesterol/sangre , HDL-Colesterol/análisis , HDL-Colesterol/sangre , LDL-Colesterol/análisis , LDL-Colesterol/sangre , Ingestión de Alimentos , Ayuno , Heces/química , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/genética , Células HT29 , Humanos , Íleon/metabolismo , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/genética , Yeyuno/metabolismo , Yeyuno/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/metabolismo , Fosforilación , Periodo Posprandial , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba
5.
Sensors (Basel) ; 18(1)2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29278402

RESUMEN

Using gold nanoparticles (AuNPs) on "capillary enzyme-linked immunosorbent assay (ELISA)", we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for "capillary ELISA" to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the "AuNP capillary ELISA", with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Anticuerpos , Oro , Peroxidasa de Rábano Silvestre , Nanopartículas del Metal
6.
Sensors (Basel) ; 17(4)2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420219

RESUMEN

This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals.


Asunto(s)
Electrónica Médica , Electrocardiografía
7.
Hepatology ; 62(1): 220-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25545350

RESUMEN

UNLABELLED: Bile acids (BAs) function as endocrine signaling molecules that activate multiple nuclear and membrane receptor signaling pathways to control fed-state metabolism. Since the detergent-like property of BAs causes liver damage at high concentrations, hepatic BA levels must be tightly regulated. Bile acid homeostasis is regulated largely at the level of transcription by nuclear receptors, particularly the primary BA receptor, farnesoid X receptor, and small heterodimer partner, which inhibits BA synthesis by recruiting repressive histone-modifying enzymes. Although histone modifiers have been shown to regulate BA-responsive genes, their in vivo functions remain unclear. Here, we show that lysine-specific histone demethylase1 (LSD1) is directly induced by BA-activated farnesoid X receptor, is recruited to the BA synthetic genes Cyp7a1 and Cyp8b1 and the BA uptake transporter gene Ntcp, and removes a gene-activation marker, trimethylated histone H3 lysine-4, leading to gene repression. Recruitment of LSD1 was dependent on small heterodimer partner, and LSD1-mediated demethylation of trimethylated histone H3 lysine-4 was required for additional repressive histone modifications, acetylated histone 3 on lysine 9 and 14 deacetylation, and acetylated histone 3 on lysine 9 methylation. A BA overload, feeding 0.5% cholic acid chow for 6 days, resulted in adaptive responses of altered expression of hepatic genes involved in BA synthesis, transport, and detoxification/conjugation. In contrast, adenovirus-mediated downregulation of hepatic LSD1 blunted these responses, which led to substantial increases in liver and serum BA levels, serum alanine aminotransferase and aspartate aminotransferase levels, and hepatic inflammation. CONCLUSION: This study identifies LSD1 as a novel histone-modifying enzyme in the orchestrated regulation mediated by the farnesoid X receptor and small heterodimer partner that reduces hepatic BA levels and protects the liver against BA toxicity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Epigénesis Genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Proc Natl Acad Sci U S A ; 110(19): 7580-5, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610435

RESUMEN

Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.


Asunto(s)
Forma de la Célula , Técnicas Analíticas Microfluídicas/instrumentación , Neoplasias/patología , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Tamaño de la Célula , Citoesqueleto/metabolismo , Fibroblastos/citología , Fricción , Humanos , Ratones , Microfluídica , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Polietilenglicoles/química , Propiedades de Superficie
9.
Biophys J ; 109(8): 1565-73, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488647

RESUMEN

Cellular physical properties are important indicators of specific cell states. Although changes in individual biophysical parameters, such as cell size, density, and deformability, during cellular processes have been investigated in great detail, relatively little is known about how they are related. Here, we use a suspended microchannel resonator (SMR) to measure single-cell density, volume, and passage time through a narrow constriction of populations of cells subjected to a variety of environmental stresses. Osmotic stress significantly affects density and volume, as previously shown. In contrast to density and volume, the effect of an osmotic challenge on passage time is relatively small. Deformability, as determined by comparing passage times for cells with similar volume, exhibits a strong dependence on osmolarity, indicating that passage time alone does not always provide a meaningful proxy for deformability. Finally, we find that protein synthesis inhibition, cell-cycle arrest, protein kinase inhibition, and cytoskeletal disruption result in unexpected relationships among deformability, density, and volume. Taken together, our results suggest that by measuring multiple biophysical parameters, one can detect unique characteristics that more specifically reflect cellular behaviors.


Asunto(s)
Tamaño de la Célula , Presión Osmótica/fisiología , Estrés Fisiológico/fisiología , Animales , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/fisiología , Ratones , Técnicas Analíticas Microfluídicas , Microfluídica , Presión Osmótica/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
10.
Front Public Health ; 12: 1387056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638471

RESUMEN

Background: Previous physiology-driven pain studies focused on examining the presence or intensity of physical pain. However, people experience various types of pain, including social pain, which induces negative mood; emotional distress; and neural activities associated with physical pain. In particular, comparison of autonomic nervous system (ANS) responses between social and physical pain in healthy adults has not been well demonstrated. Methods: We explored the ANS responses induced by two types of pain-social pain, associated with a loss of social ties; and physical pain, caused by a pressure cuff-based on multimodal physiological signals. Seventy-three healthy individuals (46 women; mean age = 20.67 ± 3.27 years) participated. Behavioral responses were assessed to determine their sensitivity to pain stimuli. Electrocardiogram, electrodermal activity, photoplethysmogram, respiration, and finger temperature (FT) were measured, and 12 features were extracted from these signals. Results: Social pain induced increased heart rate (HR) and skin conductance (SC) and decreased blood volume pulse (BVP), pulse transit time (PTT), respiration rate (RR), and FT, suggesting a heterogeneous pattern of sympathetic-parasympathetic coactivation. Moreover, physical pain induced increased heart rate variability (HRV) and SC, decreased BVP and PTT, and resulted in no change in FT, indicating sympathetic-adrenal-medullary activation and peripheral vasoconstriction. Conclusion: These results suggest that changes in HR, HRV indices, RR, and FT can serve as markers for differentiating physiological responses to social and physical pain stimuli.


Asunto(s)
Sistema Nervioso Autónomo , Dolor , Adulto , Humanos , Femenino , Adolescente , Adulto Joven , Voluntarios Sanos , Sistema Nervioso Autónomo/fisiología , Emociones/fisiología , Electrocardiografía
11.
Allergy Asthma Immunol Res ; 16(1): 42-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38262390

RESUMEN

PURPOSE: The methacholine challenge test (MCT) has high sensitivity but relatively low specificity for asthma diagnosis. This study aimed to develop and validate machine learning (ML) models to improve the diagnostic performance of MCT for asthma. METHODS: Data from 1,501 patients with asthma symptoms who underwent MCT between 2015 and 2020 were analyzed. The patients were grouped as either the training (80%, n = 1,265) and test sets (20%, n = 236) depending on the time of referral. The conventional model (provocative concentration that causes a 20% decrease in forced expiratory volume in one second [FEV1]; PC20 ≤ 16 mg/mL) was compared with the prediction models derived from five ML methods: logistic regression, support vector machine, random forest, extreme gradient boosting, and artificial neural network. The area under the receiver operator characteristic curves (AUROC) and area under the precision-recall curves (AUPRC) of each model were compared. The prediction models were further analyzed using different input combinations of FEV1, forced vital capacity (FVC), and forced expiratory flow at 25%-75% of forced vital capacity (FEF25%-75%) values obtained during MCT. RESULTS: In total, 545 patients (36.3%) were diagnosed with asthma. The AUROC of the conventional model was 0.856 (95% confidence interval [CI], 0.852-0.861), and the AUPRC was 0.759 (95% CI, 0.751-0.766). All the five ML prediction models had higher AUROC and AUPRC values than those of the conventional model, and random forest showed both highest AUROC (0.950; 95% CI, 0.948-0.952) and AUROC (0.909; 95% CI, 0.905-0.914) when FEV1, FVC, and FEF25%-75% were included as inputs. CONCLUSIONS: Artificial intelligence-based models showed excellent performance in asthma prediction compared to using PC20 ≤ 16 mg/mL. The novel technology could be used to enhance the clinical diagnosis of asthma.

12.
Arch Biochem Biophys ; 540(1-2): 1-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24135706

RESUMEN

The effect of tumor necrosis factor-α (TNFα) on cartilage matrix degradation is mediated by its transport and binding within the extracellular matrix (ECM) of the tissue, which mediates availability to cell receptors. Since the bioactive form of TNFα is a homotrimer of monomeric subunits, conversion between trimeric and monomeric forms during intratissue transport may affect binding to ECM and, thereby, bioactivity within cartilage. We studied the transport and binding of TNFα in cartilage, considering the quaternary structure of this cytokine. Competitive binding assays showed significant binding of TNFα in cartilage tissue, leading to an enhanced uptake. However, studies in which TNFα was cross-linked to remain in the trimeric form revealed that the binding of trimeric TNFα was negligible. Thus, binding of TNFα to ECM was associated with the monomeric form. Binding of TNFα was not disrupted by pre-treating cartilage tissue with trypsin, which removes proteoglycans and glycoproteins but leaves the collagen network intact. Therefore, proteoglycan loss during osteoarthritis should only alter the passive diffusion of TNFα but not its binding interaction with the remaining matrix. Our results suggest that matrix binding and trimer-monomer conversion of TNFα both play crucial roles in regulating the accessibility of bioactive TNFα within cartilage.


Asunto(s)
Cartílago Articular/metabolismo , Estructura Cuaternaria de Proteína , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Sitios de Unión , Cartílago Articular/citología , Bovinos , Matriz Extracelular/metabolismo , Humanos , Radioisótopos de Yodo , Cinética , Masculino , Unión Proteica , Transporte de Proteínas , Receptores del Factor de Necrosis Tumoral/metabolismo
13.
Arch Biochem Biophys ; 532(1): 15-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23333631

RESUMEN

The efficacy of biological therapeutics against cartilage degradation in osteoarthritis is restricted by the limited transport of macromolecules through the dense, avascular extracellular matrix. The availability of biologics to cell surface and matrix targets is limited by steric hindrance of the matrix, and the microstructure of matrix itself can be dramatically altered by joint injury and the subsequent inflammatory response. We studied the transport into cartilage of a 48 kDa anti-IL-6 antigen binding fragment (Fab) using an in vitro model of joint injury to quantify the transport of Fab fragments into normal and mechanically injured cartilage. The anti-IL-6 Fab was able to diffuse throughout the depth of the tissue, suggesting that Fab fragments can have the desired property of achieving local delivery to targets within cartilage, unlike full-sized antibodies which are too large to penetrate beyond the cartilage surface. Uptake of the anti-IL-6 Fab was significantly increased following mechanical injury, and an additional increase in uptake was observed in response to combined treatment with TNFα and mechanical injury, a model used to mimic the inflammatory response following joint injury. These results suggest that joint trauma leading to cartilage degradation can further alter the transport of such therapeutics and similar-sized macromolecules.


Asunto(s)
Cartílago Articular/lesiones , Cartílago Articular/metabolismo , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Interleucina-6/inmunología , Adulto , Animales , Cartílago Articular/inmunología , Bovinos , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Transporte de Proteínas , Estrés Mecánico , Factor de Necrosis Tumoral alfa/uso terapéutico
14.
Front Psychiatry ; 13: 842963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432030

RESUMEN

Alteration in stress response seems to affect the development of psychiatric disorders. In this study, we aimed to investigate whether baseline peripheral biomarkers could predict the reduction of stress response among patients with major depressive disorder (MDD) and panic disorder (PD). Patients with MDD (n = 41) and PD (n = 52) and healthy controls (HC, n = 59) were selected and regularly followed up with five visits for 12 weeks. The severity of stress at every visit was assessed using the Stress Response Inventory (SRI), and peripheral biomarkers were measured by blood tests at baseline and 2, 4, 8, and 12 weeks. Interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, C-reactive protein (CRP), adiponectin, and leptin levels were analyzed using enzyme-linked immunosorbent assays. Reduction of stress response was defined as the difference in SRI score between baseline and 12 weeks divided by the baseline score. SRI scores were significantly (p < 0.0001) higher in patients with MDD and PD than in HC at every visit after adjusting for variables. In multivariable linear regression, adiponectin levels at baseline were significantly associated with reduction of stress response in patients with PD. When adiponectin increased 1 mg/l, stress response decreased 0.781 points (ß = -0.781, S.E. = 0.220, p = 0.001). Among the subscales of SRI, somatization had a moderate negative correlation with adiponectin levels (r = -0.469). There was no significant association between baseline peripheral biomarkers and reduction of stress response in patients with MDD. Our study showed an inverse association between baseline adiponectin levels and stress response changes in patients with PD, but not in patients with MDD. Thus, differentiated approaches for assessing and treating stress responses of patients with PD and MDD might be helpful. Larger and longitudinal studies are necessary to establish the role and mechanism of action of adiponectin in regulating stress responses in PD.

15.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34359752

RESUMEN

Insulin-like growth factor-1 receptor (IGF-1R), an important factor in promoting cancer cell growth and survival, is commonly upregulated in cancer cells. However, amplification of the IGF1R gene is extremely rare in tumors. Here, we have provided insights into the mechanisms underlying the regulation of IGF-1R protein expression. We found that PKM2 serves as a non-metabolic protein that binds to and increases IGF-1R protein expression by promoting the interaction between IGF-1R and heat-shock protein 90 (HSP90). PKM2 depletion decreases HSP90 binding to IGF-1R precursor, thereby reducing IGF-1R precursor stability and the basal level of mature IGF-1R. Consequently, PKM2 knockdown inhibits the activation of AKT, the key downstream effector of IGF-1R signaling, and increases apoptotic cancer cell death during hypoxia. Notably, we clinically verified the PKM2-regulated expression of IGF-1R through immunohistochemical staining in a tissue microarray of 112 lung cancer patients, demonstrating a significant positive correlation (r = 0.5208, p < 0.0001) between PKM2 and IGF-1R expression. Together, the results of a previous report demonstrated that AKT mediates PKM2 phosphorylation at serine-202; these results suggest that IGF-1R signaling and PKM2 mutually regulate each other to facilitate cell growth and survival, particularly under hypoxic conditions, in solid tumors with dysregulated IGF-1R expression.

16.
J Psychiatr Res ; 133: 73-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310645

RESUMEN

Previous studies have investigated the role of inflammatory markers in suicidality of patients with major depressive disorder (MDD) or panic disorder (PD). However, few studies have investigated associations between serum inflammatory cytokine levels and suicidality. We hypothesized that MDD and PD status might be significantly associated with serum inflammatory cytokines and that we could predict levels of improvement in suicide ideation intensity using serum inflammatory biomarkers in patients with MDD and PD. For this study, 41 patients with MDD, 52 patients with PD, and 59 healthy control (HC) subjects were enrolled. Psychological measurements and serum inflammatory markers such as interleukin (IL) -6, -10, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and C reactive protein (CRP) were examined. A total of five visits were completed during 12 weeks. After controlling for confounding factors, log-transformed IL-6 (ln_IL-6) at baseline (MDD: 0.297 ± 0.626; PD: 0.342 ± 0.723; HC: -0.121 ± 0.858; p = 0.007, >0.0017, 0.05/30) and mean ln_IL-6 (MDD: 0.395 ± 0.550, PD: 0.249 ± 0.544, HC: -0.139 ± 0.622, p = 0.002, >0.0017, 0.05/30) levels were trends towards significantly higher in patients with MDD and PD than in HC. In MDD patients, a higher level of basal ln_TNF-α was a significant predictor of ΔSSI (changes in SSI scores between baseline and week 12) even after controlling for changes of depression symptoms and baseline SSI scores (standardized ß = 0.541, p = 0.002 < 0.0028, 0.05/18). In conclusion, we could predict ΔSSI using baseline inflammatory biomarkers for patients with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno de Pánico , Biomarcadores , Estudios de Seguimiento , Humanos , Ideación Suicida
17.
Arch Biochem Biophys ; 499(1-2): 32-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20447377

RESUMEN

The availability of therapeutic molecules to targets within cartilage depends on transport through the avascular matrix. We studied equilibrium partitioning and non-equilibrium transport into cartilage of Pf-pep, a 760 Da positively charged peptide inhibitor of the proprotein convertase PACE4. Competitive binding measurements revealed negligible binding of Pf-pep to sites within cartilage. Uptake of Pf-pep depended on glycosaminoglycan charge density, and was consistent with predictions of Donnan equilibrium given the known charge of Pf-pep. In separate transport experiments, the diffusivity of Pf-pep in cartilage was measured to be approximately 1 x 10(-6) cm(2)/s, close to other similarly-sized non-binding solutes. These results suggest that small positively charged therapeutics will have a higher concentration within cartilage than in the surrounding synovial fluid, a desired property for local delivery; however, such therapeutics may rapidly diffuse out of cartilage unless there is additional specific binding to intra-tissue substrates that can maintain enhanced intra-tissue concentration for local delivery.


Asunto(s)
Cartílago Articular/metabolismo , Oligopéptidos/farmacocinética , Proproteína Convertasas/antagonistas & inhibidores , Inhibidores de Proteasas/farmacocinética , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo , Bovinos , Glicosaminoglicanos/metabolismo , Técnicas In Vitro , Radioisótopos de Yodo , Cinética , Modelos Biológicos , Oligopéptidos/química , Oligopéptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Radiofármacos , Ratas , Proteínas Recombinantes/antagonistas & inhibidores , Electricidad Estática
18.
Adv Cogn Psychol ; 16(4): 291-301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408798

RESUMEN

Emotions are experienced differently by individuals, and thus, it is important to account for individuals' experienced emotions to understand their physiological responses to emotional stimuli. The present study investigated the physiological responses to a fear-inducing stimulus and examined whether these responses can predict experienced fear. A total of 230 participants were presented with neutral and fear-inducing film clips, after which they self-rated their experienced emotions. Physiological measures (skin conductance level and response: SCL, SCR, heart rate: HR, pulse transit time: PTT, fingertip temperature: FT, and respiratory rate: RR) were recorded during the stimuli presentation. We examined the correlations between the physiological measures and the participants' experienced emotional intensity, and performed a multiple linear regression to predict fear intensity based on the physiological responses. Of the participants, 92.5% experienced the fear emotion, and the average intensity was 5.95 on a 7-point Likert scale. Compared to the neutral condition, the SCL, SCR, HR, and RR increased significantly during the fear-inducing stimulus presentation whereas FT and PTT decreased significantly. Fear intensity correlated positively with SCR and HR and negatively with SCL, FT, PTT, and RR. The multiple linear regression demonstrated that fear intensity was predicted by a combination of SCL, SCR, HR, FT, and RR. Our findings indicate that the physiological responses to experiencing fear are associated with cholinergic, sympathetic, and α-adrenergic vascular activation as well as myocardial ß-sympathetic excitation, and support the use of multimodal physiological signals for quantifying emotions.

19.
Nat Commun ; 11(1): 807, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042044

RESUMEN

Autophagy is essential for cellular survival and energy homeostasis under nutrient deprivation. Despite the emerging importance of nuclear events in autophagy regulation, epigenetic control of autophagy gene transcription remains unclear. Here, we report fasting-induced Fibroblast Growth Factor-21 (FGF21) signaling activates hepatic autophagy and lipid degradation via Jumonji-D3 (JMJD3/KDM6B) histone demethylase. Upon FGF21 signaling, JMJD3 epigenetically upregulates global autophagy-network genes, including Tfeb, Atg7, Atgl, and Fgf21, through demethylation of histone H3K27-me3, resulting in autophagy-mediated lipid degradation. Mechanistically, phosphorylation of JMJD3 at Thr-1044 by FGF21 signal-activated PKA increases its nuclear localization and interaction with the nuclear receptor PPARα to transcriptionally activate autophagy. Administration of FGF21 in obese mice improves defective autophagy and hepatosteatosis in a JMJD3-dependent manner. Remarkably, in non-alcoholic fatty liver disease patients, hepatic expression of JMJD3, ATG7, LC3, and ULK1 is substantially decreased. These findings demonstrate that FGF21-JMJD3 signaling epigenetically links nutrient deprivation with hepatic autophagy and lipid degradation in mammals.


Asunto(s)
Autofagia/genética , Ayuno/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Hígado/metabolismo , Animales , Autofagia/efectos de los fármacos , Epigénesis Genética , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/deficiencia , Hepatocitos/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Klotho , Lipólisis , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , PPAR alfa/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal , Regulación hacia Arriba
20.
J Physiol Anthropol ; 38(1): 15, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779708

RESUMEN

BACKGROUND: Although emotion-specific autonomic responses based on the discrete theory of emotion have been widely studied, studies on the reliability of physiological responses to emotional stimuli are limited. In this study, we aimed to assess the reliability of physiological changes induced by the six basic emotions (happiness, sadness, anger, fear, disgust, and surprise) that were measured during 10 weekly repeated experiments. METHODS: Twelve college students participated, and in each experiment, physiological signals were collected before and while participants were watching emotion-provoking film clips. Additionally, the participants self-evaluated the emotions that they experienced during the film presentation at the end of each emotional stimulus. To avoid adaptation of participants to identical stimuli during repeated measurements, we used 10 different film clips for each emotion, and thus a total of 60 film clips over 10 weeks were used. Physiological features, such as skin conductance level (SCL), fingertip temperature (FT), heart rate (HR), and blood volume pulse (BVP), were extracted from the physiological signals. Two reliability indices, Cronbach's alpha and intraclass correlation coefficient, were calculated from the physiological features to assess internal consistency and interrater reliability, respectively. RESULTS: We found that SCL, HR, and BVP measured during the emotion-provoking phase over the 10 weekly sessions were more reliable than those assessed at baseline. Furthermore, SCL, HR, and BVP from the emotion-provoking phase exhibited excellent internal consistency and interrater reliability. CONCLUSIONS: Our findings suggest that these features can be used as reliable physiological indices in emotion studies. The results also support the significance of physiological signals as meaningful indicators for emotion recognition in HCI (human computer interface) area.


Asunto(s)
Antropología Física/normas , Sistema Nervioso Autónomo/fisiología , Emociones/fisiología , Psicofisiología/normas , Adulto , Antropología Física/métodos , Presión Sanguínea/fisiología , Femenino , Respuesta Galvánica de la Piel/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Psicofisiología/métodos , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA