RESUMEN
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Asunto(s)
Enfermedad de Parkinson/fisiopatología , Trastornos Respiratorios/fisiopatología , Humanos , Enfermedad de Parkinson/complicaciones , Trastornos Respiratorios/etiologíaRESUMEN
NEW FINDINGS: What is the central question of this study? The respiratory frequency to hypercapnia is attenuated in an animal model of Parkinson's disease (PD): what is the therapeutic potential of inhibition of anandamide hydrolysis for this respiratory deficit? What is the main finding and its importance? In an animal model of PD there is an increased variability in resting respiratory frequency and an impaired tachypnoeic response to hypercapnia, which is accompanied by diminished expression of Phox2b immunoreactivity in the retrotrapezoid nucleus (RTN). Inhibition of anandamide hydrolysis also impaired the response to hypercapnia and decreased the number of Phox2b immunoreactive cells in the RTN. This strategy does not reverse the respiratory deficits observed in an animal model of PD. ABSTRACT: Parkinson's disease (PD) is characterized by severe classic motor symptoms along with various non-classic symptoms. Among the non-classic symptoms, respiratory dysfunctions are increasingly recognized as contributory factors to complications in PD. The endocannabinoid system has been proposed as a target to treat PD and other neurodegenerative disorders. Since symptom management of PD is mainly focused on the classic motor symptoms, in this work we aimed to test the hypothesis that increasing the actions of the endocannabinoid anandamide by inhibiting its hydrolysis with URB597 reverses the respiratory deficits observed in an animal model of PD. Results show that bilateral injection of 6-hydroxydopamine hydrochloride (6-OHDA) in the dorsal striatum leads to neurodegeneration of the substantia nigra, accompanied by reduced expression of Phox2b in the retrotrapezoid nucleus (RTN), an increase in resting respiratory frequency variability and an impaired tachypnoeic response to hypercapnia. URB597 treatment in control animals was associated with an impaired tachypnoeic response to hypercapnia and a reduced expression of Phox2b in the RTN, whereas treatment of 6-OHDA-lesioned animals with URB597 was not able to reverse the deficits observed. These results suggest that targeting anandamide may not be a suitable strategy to treat PD since this treatment mimics the respiratory deficits observed in the 6-OHDA model of PD.
Asunto(s)
Enfermedad de Parkinson , Animales , Ácidos Araquidónicos , Modelos Animales de Enfermedad , Endocannabinoides , Hidrólisis , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Alcamidas PoliinsaturadasRESUMEN
NEW FINDINGS: What is the central question of this study? How does the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? The results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced neurokinin-1 density in the pre-Bötzinger complex and Bötzinger complex, and there was an incremental effect of 6-OHDA and ovariectomy on retrotrapezoid nucleus neurons. ABSTRACT: Emerging evidence indicates that the course of Parkinson's disease (PD) includes autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized (OVX) female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor density in the rostral ventrolateral respiratory group, Bötzinger and pre-Bötzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-OVX rats. Concerning respiratory parameters, in OVX rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation ( V Ì E ${\dot V_{\rm{E}}}$ ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of retrotrapezoid nucleus Phox2b neurons and hypercapnia-induced respiratory changes in PD-OVX animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model.
Asunto(s)
Enfermedad de Parkinson , Ratas , Femenino , Masculino , Animales , Oxidopamina , Hipercapnia , Ratas Wistar , Hormonas , Modelos Animales de EnfermedadRESUMEN
Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.
Asunto(s)
Enfermedad de Parkinson , Humanos , Ratones , Animales , Masculino , Oxidopamina/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Inflamación/complicaciones , Modelos Animales de Enfermedad , Neuronas DopaminérgicasRESUMEN
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Asunto(s)
Enfermedad de Parkinson , Adenosina Trifosfato , Animales , Dióxido de Carbono/metabolismo , Proteómica , Ratas , Ratas WistarRESUMEN
Orthostatic hypotension is one of the most common symptoms observed in Parkinson's disease (PD), a neurodegenerative disease caused by death of dopaminergic neurons in the substantia nigra pars compacta (SNc), and it is associated with denervation of the heart and impairment of the baroreflex. Here, we aimed to investigate if the impaired baroreflex was associated with lower activation of cardiovascular brainstem areas in a 6-hydroxydopamine (6-OHDA) animal model of PD. The PD model was generated with male Wistar rats by injection of 6-OHDA or vehicle into the striatum. After 20 or 60 days, the femoral vein and artery were cannulated to assess cardiovascular parameters during injection of sodium nitroprusside (SNP) or phenylephrine (Phe). Brainstem slices were submitted to immunohistochemistry and immunofluorescence. After 6-OHDA injection, 75% of the dopaminergic neurons in the SNc were absent, confirming establishment of the PD model. Intravenous (iv) injection of SNP generated reduced hypotension and tachycardia response, and the noncatecholaminergic (nonC1) neurons of the rostral ventrolateral medulla (RVLM) were less activated. Additionally, iv injection of Phe increased blood pressure and bradycardia to the same extent and activated equivalent numbers of neurons in the nucleus of the solitary tract and the caudal ventrolateral medulla as well as cholinergic neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus between control and PD animals. In summary, these data showed that in the PD model, impairment of cardiovascular autonomic control was observed only during deactivation of the baroreflex, which could be related to reduced activation of non-C1 neurons within the RVLM.