Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(17): 4512-4530.e22, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34343496

RESUMEN

Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.


Asunto(s)
Receptores CXCR6/metabolismo , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral , Animales , Antígeno B7-H1/metabolismo , Comunicación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligandos , Ganglios Linfáticos/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones Endogámicos C57BL
2.
Immunity ; 56(1): 143-161.e11, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630913

RESUMEN

Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.


Asunto(s)
Interleucinas , Neoplasias , Receptores Virales , Linfocitos T Colaboradores-Inductores , Animales , Humanos , Ratones , Antígenos de Diferenciación de Linfocitos T/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias/metabolismo , Unión Proteica , Linfocitos T Colaboradores-Inductores/metabolismo , Interleucina-22
3.
Nature ; 570(7759): 112-116, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31092922

RESUMEN

Solid tumours are infiltrated by effector T cells with the potential to control or reject them, as well as by regulatory T (Treg) cells that restrict the function of effector T cells and thereby promote tumour growth1. The anti-tumour activity of effector T cells can be therapeutically unleashed, and is now being exploited for the treatment of some forms of human cancer. However, weak tumour-associated inflammatory responses and the immune-suppressive function of Treg cells remain major hurdles to broader effectiveness of tumour immunotherapy2. Here we show that, after disruption of the CARMA1-BCL10-MALT1 (CBM) signalosome complex, most tumour-infiltrating Treg cells produce IFNγ, resulting in stunted tumour growth. Notably, genetic deletion of both or even just one allele of CARMA1 (also known as Card11) in only a fraction of Treg cells-which avoided systemic autoimmunity-was sufficient to produce this anti-tumour effect, showing that it is not the mere loss of suppressive function but the gain of effector activity by Treg cells that initiates tumour control. The production of IFNγ by Treg cells was accompanied by activation of macrophages and upregulation of class I molecules of the major histocompatibility complex on tumour cells. However, tumour cells also upregulated the expression of PD-L1, which indicates activation of adaptive immune resistance3. Consequently, blockade of PD-1 together with CARMA1 deletion caused rejection of tumours that otherwise do not respond to anti-PD-1 monotherapy. This effect was reproduced by pharmacological inhibition of the CBM protein MALT1. Our results demonstrate that partial disruption of the CBM complex and induction of IFNγ secretion in the preferentially self-reactive Treg cell pool does not cause systemic autoimmunity but is sufficient to prime the tumour environment for successful immune checkpoint therapy.


Asunto(s)
Proteína 10 de la LLC-Linfoma de Células B/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización CARD/antagonistas & inhibidores , Inmunoterapia/métodos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Complejos Multiproteicos/antagonistas & inhibidores , Neoplasias/terapia , Linfocitos T Reguladores/inmunología , Animales , Autoinmunidad , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Femenino , Tolerancia Inmunológica , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Macrófagos/inmunología , Masculino , Ratones , Neoplasias/inmunología , Neoplasias/patología
4.
Br J Cancer ; 129(4): 696-705, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400680

RESUMEN

BACKGROUND: In many situations, the therapeutic efficacy of CAR T cells is limited due to immune suppression and poor persistence. Immunostimulatory fusion protein (IFP) constructs have been advanced as a tool to convert suppressive signals into stimulation and thus promote the persistence of T cells, but no universal IFP design has been established so far. We now took advantage of a PD-1-CD28 IFP as a clinically relevant structure to define key determinants of IFP activity. METHODS: We compared different PD-1-CD28 IFP variants in a human leukemia model to assess the impact of distinctive design choices on CAR T cell performance in vitro and a xenograft mouse model. RESULTS: We observed that IFP constructs that putatively exceed the extracellular length of PD-1 induce T-cell response without CAR target recognition, rendering them unsuitable for tumour-specific therapy. IFP variants with physiological PD-1 length ameliorated CAR T cell effector function and proliferation in response to PD-L1+ tumour cells in vitro and prolonged survival in vivo. Transmembrane or extracellular CD28 domains were found to be replaceable by corresponding PD-1 domains for in vivo efficacy. CONCLUSION: PD-1-CD28 IFP constructs must mimic the physiological interaction of PD-1 with PD-L1 to retain selectivity and mediate CAR-conditional therapeutic activity.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia , Humanos , Ratones , Animales , Antígenos CD28 , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Línea Celular Tumoral
5.
Mol Cancer ; 21(1): 199, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229873

RESUMEN

Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity.Here, we show in the EwS model that - capitalizing on neomorphic DNA-binding preferences - the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes.We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically 'cold'.Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.


Asunto(s)
Sarcoma de Ewing , Sarcoma , Antígenos de Superficie/uso terapéutico , Línea Celular Tumoral , Niño , ADN , Ganciclovir/uso terapéutico , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/uso terapéutico , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma/genética , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/terapia , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Timidina Quinasa/uso terapéutico
6.
Br J Cancer ; 127(12): 2175-2185, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266575

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS: Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS: We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS: Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Adenosina/farmacología , Citocinas , Microambiente Tumoral
7.
Semin Cancer Biol ; 65: 80-90, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31705998

RESUMEN

The remarkable success of chimeric antigen receptor (CAR)-engineered T cells in pre-B cell acute lymphoblastic leukemia (ALL) and B cell lymphoma led to the approval of anti-CD19 CAR T cells as the first ever CAR T cell therapy in 2017. However, with the number of CAR T cell-treated patients increasing, observations of tumor escape and resistance to CAR T cell therapy with disease relapse are demonstrating the current limitations of this therapeutic modality. Mechanisms hampering CAR T cell efficiency include limited T cell persistence, caused for example by T cell exhaustion and activation-induced cell death (AICD), as well as therapy-related toxicity. Furthermore, the physical properties, antigen heterogeneity and immunosuppressive capacities of solid tumors have prevented the success of CAR T cells in these entities. Herein we review current obstacles of CAR T cell therapy and propose strategies in order to overcome these hurdles and expand CAR T cell therapy to a broader range of cancer patients.


Asunto(s)
Resistencia a Antineoplásicos/inmunología , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/tratamiento farmacológico , Receptores Quiméricos de Antígenos/inmunología , Humanos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología
8.
Br J Cancer ; 120(1): 79-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429531

RESUMEN

BACKGROUND: CD16-chimeric antigen receptors (CAR) T cells recognise the Fc-portion of therapeutic antibodies, which can enable the selective targeting of different antigens. Limited evidence exists as to which CD16-CAR design and antibody partner might be most effective. We have hypothesised that the use of high-affinity CD16 variants, with increased Fc-terminus antibody affinity, combined with Fc-engineered antibodies, would provide superior CD16-CAR T cell efficacy. METHODS: CD16-CAR T (wild-type or variants) cells were co-cultured with Panc-1 pancreatic cancer, Raji lymphoma or A375 melanoma cells in the presence or absence of anti-CD20, anti-MCSP, wild-type or the glycoengineered antibody variants. The endpoints were proliferation, activation, and cytotoxicity in vitro. RESULTS: The CD16 158 V variant of CD16-CAR T cells showed increased cytotoxic activity against all the tested cancer cells in the presence of the wild-type antibody directed against MCSP or CD20. Glycoengineered antibodies enhanced CD16-CAR T cell activity irrespective of CD16 polymorphisms as compared with the wild-type antibody. The combination of the glycoengineered antibodies with the CD16-CAR 158 V variant synergised as seen by the increase in all endpoints. CONCLUSION: These results indicate that CD16-CAR with the high-affinity CD16 variant 158 V, combined with Fc-engineered antibodies, have high anti-tumour efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Inmunoterapia , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Polimorfismo Genético , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores de IgG/inmunología , Rituximab/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
9.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875739

RESUMEN

Effective adoptive T cell therapy (ACT) comprises the killing of cancer cells through the therapeutic use of transferred T cells. One of the main ACT approaches is chimeric antigen receptor (CAR) T cell therapy. CAR T cells mediate MHC-unrestricted tumor cell killing by enabling T cells to bind target cell surface antigens through a single-chain variable fragment (scFv) recognition domain. Upon engagement, CAR T cells form a non-classical immune synapse (IS), required for their effector function. These cells then mediate their anti-tumoral effects through the perforin and granzyme axis, the Fas and Fas ligand axis, as well as the release of cytokines to sensitize the tumor stroma. Their persistence in the host and functional outputs are tightly dependent on the receptor's individual components-scFv, spacer domain, and costimulatory domains-and how said component functions converge to augment CAR T cell performance. In this review, we bring forth the successes and limitations of CAR T cell therapy. We delve further into the current understanding of how CAR T cells are designed to function, survive, and ultimately mediate their anti-tumoral effects.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Animales , Proteína Ligando Fas/metabolismo , Granzimas/metabolismo , Humanos , Neoplasias/inmunología , Perforina/metabolismo , Transducción de Señal , Linfocitos T/trasplante , Receptor fas/metabolismo
10.
Oncoimmunology ; 12(1): 2163781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687005

RESUMEN

Lung cancer patients are at risk for brain metastases and often succumb to their intracranial disease. Chimeric Antigen Receptor (CAR) T-cells emerged as a powerful cell-based immunotherapy for hematological malignancies; however, it remains unclear whether CAR T-cells represent a viable therapy for brain metastases. Here, we established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic cranial window with repetitive intracerebral two-photon laser scanning-microscopy. This approach enabled in vivo-characterization of fluorescent CAR T-cells and tumor cells on a single-cell level over weeks. Intraparenchymal injection of Lewis lung carcinoma cells (expressing the tumor cell-antigen EpCAM) was performed, and EpCAM-directed CAR T-cells were injected either intravenously or into the adjacent brain parenchyma. In mice receiving EpCAM-directed CAR T-cells intravenously, we neither observed substantial CAR T-cell accumulation within the tumor nor relevant anti-tumor effects. Local CAR T-cell injection, however, resulted in intratumoral CAR T-cell accumulation compared to controls treated with T-cells lacking a CAR. This finding was accompanied by reduced tumorous growth as determined per in vivo-microscopy and immunofluorescence of excised brains and also translated into prolonged survival. However, the intratumoral number of EpCAM-directed CAR T-cells decreased during the observation period, pointing toward insufficient persistence. No CNS-specific or systemic toxicities of EpCAM-directed CAR T-cells were observed in our fully immunocompetent model. Collectively, our findings indicate that locally (but not intravenously) injected CAR T-cells may safely induce relevant anti-tumor effects in brain metastases from lung cancer. Strategies improving the intratumoral CAR T-cell persistence may further boost the therapeutic success.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Ratones , Animales , Molécula de Adhesión Celular Epitelial , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva/métodos , Citotoxicidad Inmunológica , Linfocitos T , Neoplasias Pulmonares/terapia , Neoplasias Encefálicas/terapia , Antígenos de Neoplasias
11.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37208128

RESUMEN

BACKGROUND: Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS: Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS: MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION: The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.


Asunto(s)
Anticuerpos Biespecíficos , Melanoma , Humanos , Ratones , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Linfocitos T , Recurrencia Local de Neoplasia , Antígenos de Neoplasias
12.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36914885

RESUMEN

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Asunto(s)
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfocitos T , Inmunoterapia Adoptiva , Línea Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral
13.
Methods Cell Biol ; 167: 99-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153001

RESUMEN

Adoptive T cell therapy (ACT) is a therapeutic approach which employs genetically manipulated autologous T cells to target and eliminate a patient's malignancy. This novel therapeutic approach, when employing a chimeric antigen receptor (CAR) targeting CD19-expressing B cells, has shown remarkable success in treating acute B-cell lymphocytic leukemia. However, blood born malignancies represent only a fraction of cancers which affect patients. Unfortunately, the utilization of ACT to target solid malignancies has only shown marginal success rates. There are many known obstacles which hinder CAR T cell therapy in patients suffering from solid cancer, one notable obstacle is the effective trafficking of CAR T cells to the tumor site. With the rapid advancement of novel approaches and targets which may enhance CAR T cell infiltration into solid tumors, a standardized approach to assess and measure CAR T cell infiltration becomes imperative in order to compare these different approaches across platforms. Here we describe a flow cytometry method which enables the rapid detection and quantification of CAR T cells which have reached and entered the tumor mass following intravenous injection. Competence with single cell preparation and flow cytometry is required for optimal results.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Citometría de Flujo , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T , Linfocitos T
14.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34824159

RESUMEN

BACKGROUND: Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. METHODS: NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. RESULTS: We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. CONCLUSION: Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.


Asunto(s)
Proteína 1 Similar a Quitinasa-3/metabolismo , Evasión Inmune/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/genética , Animales , Femenino , Humanos , Ratones
15.
Leukemia ; 35(8): 2243-2257, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414484

RESUMEN

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia Experimental/terapia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Femenino , Humanos , Leucemia Experimental/inmunología , Leucemia Experimental/patología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Immunother Cancer ; 9(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408092

RESUMEN

BACKGROUND: Immunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described. METHODS: We used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells. RESULTS: Our study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth. CONCLUSIONS: Our results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy.


Asunto(s)
Anticuerpos/administración & dosificación , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Poli I-C/administración & dosificación , Receptor de Muerte Celular Programada 1/metabolismo , Piel/citología , Animales , Anticuerpos/farmacología , Antígenos CD40/antagonistas & inhibidores , Línea Celular Tumoral , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor 2 Celular del Virus de la Hepatitis A/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Estadificación de Neoplasias , Poli I-C/farmacología , Receptor de Muerte Celular Programada 1/genética , Análisis de Secuencia de ARN , Piel/efectos de los fármacos , Piel/inmunología
17.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108220

RESUMEN

CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-ß (TGF-ß). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-ß receptor 2 (DNR) can simultaneously shield them from TGF-ß. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-ß shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta/farmacología
18.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34083764

RESUMEN

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfocitos T , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Mesotelina , Ratones , Neoplasias Pancreáticas/terapia , Receptores de Quimiocina/genética
19.
Cells ; 8(5)2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108883

RESUMEN

Cancer therapy has entered a new era, transitioning from unspecific chemotherapeutic agents to increasingly specific immune-based therapeutic strategies. Among these, chimeric antigen receptor (CAR) T cells have shown unparalleled therapeutic potential in treating refractory hematological malignancies. In contrast, solid tumors pose a much greater challenge to CAR T cell therapy, which has yet to be overcome. As this novel therapeutic modality matures, increasing effort is being invested to determine the optimal structure and properties of CARs to facilitate the transition from empirical testing to the rational design of CAR T cells. In this review, we highlight how individual CAR domains contribute to the success and failure of this promising treatment modality and provide an insight into the most notable advances in the field of CAR T cell engineering.


Asunto(s)
Ingeniería Celular/métodos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Antígenos CD8/inmunología , Edición Génica , Humanos , Dominios Proteicos/inmunología , Anticuerpos de Cadena Única/inmunología , Transgenes , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
20.
Transl Oncol ; 12(2): 350-360, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30502589

RESUMEN

Microphthalmia-associated transcription factor (MITF) is a key transcription factor in melanoma development and progression. MITF amplification and downregulation have been observed in a significant proportion of melanoma patients and correlate with clinical outcomes. Here, we have investigated the effect of MITF on melanoma chemokine expression and immune cell attraction. In B16F10 melanoma cells, MITF knockdown reduced expression of CXCL10, with concomitantly decreased attraction of immune cells and accelerated tumor outgrowth. Conversely, overexpression of MITF in YUMM1.1 melanoma cells also led to an increased immune cell attraction in vitro. Subcutaneous YUMM1.1 melanomas overexpressing MITF however showed a reduced immune infiltration of lymphocytes and an increased tumor growth. In human melanoma cell lines, silencing of MITF enhanced chemokine production and immune cell attraction, while overexpression of MITF led to lower immune cell attraction. In summary, our results show that MITF regulates chemokine expression in murine and in human melanoma cells, and affects in vivo immune cell attraction and tumor growth. These results reveal a functional relationship between MITF and immune cell infiltration, which may be exploited for cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA