RESUMEN
Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.
RESUMEN
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Hemaglutininas , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Antivirales , Hurones , Anticuerpos Neutralizantes , InmunizaciónRESUMEN
Lineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope. Antibodies RV217-VRC42.01, -VRC43.01, and -VRC46.01 used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation and normal antibody-loop lengths and were initiated by the founder virus MPER. The broadest lineage, VRC42, was similar to the known bNAb 4E10. A multimeric immunogen based on the founder MPER activated B cells bearing the unmutated common ancestor of VRC42, with modest maturation of early VRC42 intermediates imparting neutralization breadth. These features suggest that VRC42 may be a promising template for lineage-based vaccine design.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Linfocitos B/inmunología , Línea Celular , Células HEK293 , Infecciones por VIH/inmunología , Humanos , Leucocitos Mononucleares , Estudios LongitudinalesRESUMEN
Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.
Asunto(s)
Antineoplásicos , Receptores de IgG , Animales , Receptores de IgG/genética , Macaca mulatta/metabolismo , Antígenos CD40 , Ligando de CD40 , Inmunoglobulina GRESUMEN
Perinatally HIV-infected children (PHIV), despite successful antiretroviral therapy, present suboptimal responses to vaccinations compared to healthy-controls (HC). Here we investigated phenotypic and transcriptional signatures of H1N1-specific B-cells (H1N1-Sp) in PHIV, differentially responding to trivalent-influenza-vaccine (TIV), and HC. Patients were categorized in responders (R) and non-responders (NR) according to hemagglutination-inhibition-assay at baseline and 21 days after TIV. No differences in H1N1-Sp frequencies were found between groups. H1N1-Sp transcriptional analysis revealed a distinct signature between PHIV and HC. NR presented higher PIK3C2B and NOD2 expression compared to R, confirmed by downregulation of PIK3C2B in resting-memory of R after H1N1 in-vitro stimulation. In conclusion this study confirms that qualitative rather than quantitative analyses are needed to characterize immune responses in PHIV. These results further suggest that higher PIK3C2B in H1N1-Sp of NR is associated with lower H1N1 immunogenicity and may be targeted by future modulating strategies to improve TIV responses in PHIV.
Asunto(s)
Linfocitos B/inmunología , Fosfatidilinositol 3-Quinasas Clase II/inmunología , Expresión Génica/inmunología , Infecciones por VIH/inmunología , Inmunogenicidad Vacunal/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Anticuerpos Antivirales/inmunología , Fosfatidilinositol 3-Quinasas Clase II/genética , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Femenino , Expresión Génica/genética , Pruebas de Inhibición de Hemaglutinación/métodos , Humanos , Masculino , Transcripción Genética/genética , Transcripción Genética/inmunología , Vacunación/métodosRESUMEN
HIV-infected patients of all ages frequently underperform in response to seasonal influenza vaccination, despite virologic control of HIV. The molecular mechanisms governing this impairment, as well as predictive biomarkers for responsiveness, remain unknown. This study was performed in samples obtained prevaccination (T0) from HIV-infected children who received the 2012-2013 seasonal influenza vaccine. Response status was determined based on established criterion for hemagglutination inhibition titer; participants with a hemagglutination titer ≥1:40 plus a ≥4-fold increase over T0 at 3 wk postvaccination were designated as responders. All children had a history of prior influenza vaccinations. At T0, the frequencies of CD4 T cell subsets, including peripheral T follicular helper (pTfh) cells, which provide help to B cells for developing into Ab-secreting cells, were similar between responders and nonresponders. However, in response to in vitro stimulation with influenza A/California/7/2009 (H1N1) Ag, differential gene expression related to pTfh cell function was observed by Fluidigm high-density RT-PCR between responders and nonresponders. In responders, H1N1 stimulation at T0 also resulted in CXCR5 induction (mRNA and protein) in CD4 T cells and IL21 gene induction in pTfh cells that were strongly associated with H1N1-specific B cell responses postvaccination. In contrast, CD4 T cells of nonresponders exhibited increased expression of IL2 and STAT5 genes, which are known to antagonize peripheral Tfh cell function. These results suggest that the quality of pTfh cells at the time of immunization is important for influenza vaccine responses and provide a rationale for targeted, ex vivo Ag-driven molecular profiling of purified immune cells to detect predictive biomarkers of the vaccine response.
Asunto(s)
Biomarcadores/metabolismo , Infecciones por VIH/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/diagnóstico , Interleucinas/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Células Cultivadas , Niño , Estudios de Cohortes , Ensayo de Immunospot Ligado a Enzimas , Femenino , Perfilación de la Expresión Génica , Infecciones por VIH/diagnóstico , Humanos , Inmunidad Humoral , Gripe Humana/inmunología , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucinas/genética , Masculino , Pronóstico , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Adulto JovenRESUMEN
The membrane-proximal external regions (MPER) of the human immunodeficiency virus envelope glycoprotein (GP) generate broadly reactive antibody responses and are the focus of vaccine development efforts. The conservation of amino acids within filovirus GP heptad repeat region (HR)2/MPER suggests that it may also represent a target for a pan-filovirus vaccine. We immunized a cynomolgus macaque against Ebola virus (EBOV) using a deoxyribonucleic acid/adenovirus 5 prime/boost strategy, sequenced memory B-cell receptors, and tested the antibodies for functional activity against EBOV GP. Antibody ma-C10 bound to GP with an affinity of 48 nM and was capable of inducing antibody-dependent cellular cytotoxicity. Three-dimensional reconstruction of single-particle, negative-stained, electron microscopy showed that ma-C10 bound to the HR2/MPER, and enzyme-linked immunosorbent assay reveals it binds to residues 621-631. More importantly, ma-C10 was found to bind to the GP of the 3 most clinically relevant Ebolavirus species, suggesting that a cross-species immunogen strategy targeting the residues in this region may be a feasible approach for producing a pan-filovirus vaccine.
Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra el Virus del Ébola/inmunología , Epítopos/inmunología , Glicoproteínas de Membrana/inmunología , Animales , Reacciones Cruzadas , Macaca fascicularis , VacunaciónRESUMEN
We recently identified a single potently neutralizing monoclonal antibody (mAb), mAb114, isolated from a human survivor of natural Zaire ebolavirus (EBOV) infection, which fully protects nonhuman primates (NHPs) against lethal EBOV challenge. To evaluate the ability of vaccination to generate mAbs such as mAb114, we cloned antibodies from NHPs vaccinated with vectors encoding the EBOV glycoprotein (GP). We identified 14 unique mAbs with potent binding to GP, 4 of which were neutralized and had the functional characteristics of mAb114. These vaccine-induced macaque mAbs share many sequence similarities with mAb114 and use the same mAb114 VH gene (ie, IGHV3-13) when classified using the macaque IMGT database. The antigen-specific VH-gene repertoire present after each immunization indicated that IGHV3-13 mAbs populate an EBOV-specific B-cell repertoire that appears to become more prominent with subsequent boosting. These findings will support structure-based vaccine design aimed at enhanced induction of antibodies such as mAb114.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Animales , Humanos , Concentración de Iones de Hidrógeno , Macaca fascicularis , Vacunación , Proteínas del Envoltorio Viral/inmunologíaRESUMEN
Response to seasonal influenza vaccination is currently evaluated by antibody correlates that estimate vaccine seroconversion as well as immune protection. These correlates rely on the general dogmas surrounding seasonal influenza vaccination; that is, that vaccine-induced antibodies would exclusively generate immunity to influenza vaccine strains and that protective immunity would wane before the next season. Here, we summarize recently reported data on immunity to seasonal influenza in healthy individuals and rediscuss results on yearly vaccinated pediatric immunocompromised patients that together highlight the need for revision of the current correlates of vaccine response to shift from quantitative to qualitative measurements.
Asunto(s)
Anticuerpos Antivirales/sangre , Esquemas de Inmunización , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Pruebas Serológicas , Vacunación , Biomarcadores/sangre , Humanos , Huésped Inmunocomprometido , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estaciones del Año , Factores de Tiempo , Resultado del TratamientoRESUMEN
BACKGROUND: In the field of kidney transplantation, identifying early signatures of humoral rejection is a key challenge. METHODS: We investigated the presence of anti-HLA antibodies and the distribution of lymphocyte subpopulations in 77 kidney-transplanted children and young adults compared to 23 healthy controls. Moreover, we tested whether the presence of anti-HLA antibodies could be related to modification in lymphocyte phenotype. Finally, we correlated the presence of anti-HLA antibodies and specific alteration of lymphocyte subsets with clinical outcomes. RESULTS: In kidney-transplanted children who developed anti-HLA antibodies, we observed an expansion of double-negative B cells (CD19 + CD27-IgD-), indicating premature aging of this compartment. Moreover, we reported signs of impaired B cell regulation, indicated by a higher IL-21R+ B cell frequency associated with an abnormal increase of follicular helper T cells. Finally, a considerable reduction in CD8+ effector T and invariant Natural killer T (NKT) cells was observed. The stability of graft function over time is significantly correlated with the frequency of peripheral effector CD4+ and CD8+ T cells and invariant NKT cells. CONCLUSIONS: This study supports the usefulness of lymphocyte subset as one of a spectrum of early diagnostic tools required to identify patients at risk of developing donor alloimmune response.
Asunto(s)
Suero Antilinfocítico/inmunología , Rechazo de Injerto/inmunología , Antígenos HLA/inmunología , Inmunidad Celular , Trasplante de Riñón/efectos adversos , Subgrupos Linfocitarios/inmunología , Adolescente , Adulto , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Niño , Preescolar , Femenino , Citometría de Flujo , Humanos , Masculino , Células T Asesinas Naturales/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Adulto JovenRESUMEN
BACKGROUND: Chronic granulomatous disease (CGD) is a primary immune deficiency characterized by a defect in reactive oxygen species production. Although the effect of CGD mainly reflects on the phagocytic compartment, B-cell responses are also impaired in patients with CGD. OBJECTIVE: We sought to investigate how defective gp91(phox) expression in patients with CGD and CGD carriers might affect the B-cell compartment and maintenance of long-term memory. METHODS: We studied the B-cell compartment of patients with CGD in terms of phenotype and ability to produce reactive oxygen species and proliferate on stimuli differently directed to the B-cell receptor and Toll-like receptor 9. We further studied their capacity to maintain long-term memory by measuring cellular and serologic responses to measles. RESULTS: We show that the memory B-cell compartment is impaired among patients with CGD, as indicated by reduced total (CD19(+)CD27(+)) and resting (CD19(+)CD27(+)CD21(+)) memory B cells in parallel to increased naive (CD19(+)CD27(-)IgD(+)) B-cell frequencies. Data on CGD carriers reveal that such alterations are related to gp91(phox) expression. Moreover, proliferative capabilities of B cells on selective in vitro stimulation of B-cell receptor or Toll-like receptor 9 pathways were reduced in patients with CGD compared with those seen in age-matched healthy control subjects. Significantly lower measles-specific antibody levels and antibody-secreting cell numbers were also observed, indicating a poor ability to maintain long-term memory in these patients. CONCLUSION: Altogether, our data suggest that patients with CGD present a defective B-cell compartment in terms of frequencies of memory B cells, response to in vitro stimulation, and maintenance of long-term antigen-specific memory.
Asunto(s)
Linfocitos B/inmunología , Enfermedad Granulomatosa Crónica/inmunología , Memoria Inmunológica/efectos de los fármacos , Sarampión/prevención & control , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Adolescente , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/patología , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Preescolar , Femenino , Expresión Génica , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/patología , Humanos , Inmunofenotipificación , Lactante , Masculino , Sarampión/inmunología , Glicoproteínas de Membrana/genética , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Fenotipo , Mitógenos de Phytolacca americana/farmacología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Vacunación , Vacunas Virales/administración & dosificación , Adulto JovenRESUMEN
BACKGROUND: Aged individuals respond poorly to vaccination and have a higher risk of contracting infections in comparison to younger individuals; whether age impacts on the composition and function of B cell subpopulations relevant for immune responses is still controversial. It is also not known whether increased age during HIV-1 infection further synergizes with the virus to alter B cell subpopulations. In view of the increased number of HIV-1 infected patients living to high age as a result of anti-retroviral treatment this is an important issue to clarify. RESULTS: In this work we evaluated the distribution of B cell subpopulations in young and aged healthy individuals and HIV-1 infected patients, treated and naïve to treatment. B cell populations were characterized for the expression of inhibitory molecules (PD-1 and FcRL4) and activation markers (CD25 and CD69); the capacity of B cells to respond to activation signals through up-regulation of IL-6 expression was also evaluated. Increased frequencies of activated and tissue-like memory B cells occurring during HIV-1 infection are corrected by prolonged ART therapy. Our findings also reveal that, in spite of prolonged treatment, resting memory B cells in both young and aged HIV-1 infected patients are reduced in number, and all memory B cell subsets show a low level of expression of the activation marker CD25. CONCLUSIONS: The results of our study show that resting memory B cells in ART-treated young and aged HIV-1 infected patients are reduced in number and memory B cell subsets exhibit low expression of the activation marker CD25. Aging per se in the HIV-1 infected population does not worsen impairments initiated by HIV-1 in the memory B cell populations of young individuals.
Asunto(s)
Envejecimiento/inmunología , Fármacos Anti-VIH/uso terapéutico , Subgrupos de Linfocitos B/inmunología , Infecciones por VIH/inmunología , VIH-1 , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Subunidad alfa del Receptor de Interleucina-2/análisis , Interleucina-6/biosíntesis , Lectinas Tipo C/análisis , Persona de Mediana Edad , FenotipoRESUMEN
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
RESUMEN
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.
RESUMEN
INTRODUCTION: After receiving emergency approval during the COVID-19 pandemic, mRNA vaccines have taken center stage in the quest to enhance future vaccination strategies for both infectious diseases and cancer. Indeed, they have significantly overshadowed another facet of genetic vaccination, specifically DNA vaccines. Nevertheless, it is important to acknowledge that both types of genetic vaccines have distinct advantages and disadvantages that set them apart from each other. AREAS COVERED: In this work, we delve extensively into the history of genetic vaccines, their mechanisms of action, their strengths, and limitations, and ultimately highlight ongoing research in key areas for potential enhancement of both DNA and mRNA vaccines. EXPERT OPINION: Here, we assess the significance of the primary benefits and drawbacks associated with DNA and mRNA vaccination. We challenge the current lines of thought by highlighting that the existing drawbacks of DNA vaccination could potentially be more straightforward to address compared to those linked with mRNA vaccination. In our view, this suggests that DNA vaccines should remain viable contenders in the pursuit of the future of vaccination.
Asunto(s)
Vacunas de ADN , Vacunas , Humanos , Pandemias , Vacunación , ADN , ARN Mensajero/genéticaRESUMEN
Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.
Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Humanos , Rabia/prevención & control , Vacunas Antirrábicas/genética , Anticuerpos ampliamente neutralizantes , ARN Mensajero , Anticuerpos Antivirales , Virus de la Rabia/genética , GlicoproteínasRESUMEN
HIV gp120 engineered outer domain germline-targeting version 8 (eOD-GT8) was designed specifically to engage naive B cell precursors of VRC01-class antibodies. However, the frequency and affinity of naive B cell precursors able to recognize eOD-GT8 have been evaluated only in U.S. populations. HIV infection is disproportionally concentrated in sub-Saharan Africa, so we seek to characterize naive B cells able to recognize eOD-GT8 in sub-Saharan cohorts. We demonstrate that people from sub-Saharan Africa have a higher or equivalent frequency of naive B cells able to engage eOD-GT8 compared with people from the U.S. Genetically, the higher frequency of eOD-GT8-positive cells is accompanied by a higher level of naive B cells with gene signatures characteristic of the VRC01 class, as well as other CD4bs-directed antibodies. Our study demonstrates that vaccination with eOD-GT8 in sub-Saharan Africa could be successful at expanding and establishing a pool of CD4bs-directed memory B cells from naive precursors.
Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Células Precursoras de Linfocitos B , Proteína gp120 de Envoltorio del VIHRESUMEN
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Asunto(s)
COVID-19 , Linfocitos T Colaboradores-Inductores , Humanos , Células T Auxiliares Foliculares , SARS-CoV-2 , Células PlasmáticasRESUMEN
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials. One-Sentence Summary: Human genetic variation can modulate the strength of vaccine-induced broadly neutralizing antibody precursor B cell responses.
RESUMEN
HIV-1 infection induces a progressive disruption of the B cell compartment impairing long-term immune responses to routine immunizations. Depletion of specific memory B cell pools occurs during the 1st stages of the infection and cannot be reestablished by antiretroviral treatment. We reasoned that an early control of viral replication through treatment could preserve the normal development of the memory B cell compartment and responses to routine childhood vaccines. Accordingly, we evaluated the effects of different highly-active antiretroviral therapy (HAART) schedules in 70 HIV-1 vertically-infected pediatric subjects by B cell phenotypic analyses, antigen-specific B cell enzyme-linked immunosorbent spot (ELISpot) and ELISA for common vaccination and HIV-1 antigens. Initiation of HAART within the 1st year of life permits the normal development and maintenance of the memory B cell compartment. On the contrary, memory B cells from patients treated later in time are remarkably reduced and their function is compromised regardless of viral control. A cause for concern is that both late-treated HIV-1 controllers and noncontrollers loose protective antibody titers against common vaccination antigens. Timing of HAART initiation is the major factor predicting the longevity of B cell responses in vaccinated HIV-1-infected children.