Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Transl Stroke Res ; 14(2): 263-277, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35583716

RESUMEN

Considerable efforts are currently made to develop strategies that boost endogenous recovery once a stroke has occurred. Owing to their restorative properties, neurotrophic factors are attractive candidates that capitalize on endogenous response mechanisms. Non-conventional growth factors cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) promote neuronal survival and reduce neurological deficits in the acute phase of ischemic stroke in mice. Their effects on endogenous repair and recovery mechanisms in the stroke recovery phase were so far unknown. By intracerebroventricular delivery of CDNF or MANF starting 3 days post-stroke (1 µg/day for 28 days via miniosmotic pumps), we show that delayed CDNF and MANF administration promoted functional neurological recovery assessed by a battery of behavioral tests, increased long-term neuronal survival, reduced delayed brain atrophy, glial scar formation, and, in case of CDNF but not MANF, increased endogenous neurogenesis in the perilesional brain tissue. Besides, CDNF and MANF administration increased long-distance outgrowth of terminal axons emanating from the contralesional pyramidal tract, which crossed the midline to innervate ipsilesional facial nucleus. This plasticity promoting effect was accompanied by downregulation of the axonal growth inhibitor versican and the guidance molecules ephrin B1 and B2 in the previously ischemic hemisphere at 14 dpi, which represents a sensitive time-point for axonal growth. CDNF and MANF reduced the expression of the proinflammatory cytokines IL1ß and TNFα in both hemispheres. The effects of non-conventional growth factors in the ischemic brain should further be examined since they might help to identify targets for restorative stroke therapy.


Asunto(s)
Dopamina , Accidente Cerebrovascular , Animales , Ratones , Astrocitos/metabolismo , Axones , Encéfalo/metabolismo , Dopamina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología
2.
Mol Neurobiol ; 60(8): 4359-4372, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093494

RESUMEN

Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Ratones Endogámicos C57BL , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Daño por Reperfusión/metabolismo , Modelos Animales de Enfermedad
3.
Exp Neurol ; 351: 113996, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35122865

RESUMEN

Lithium, in addition to its effect on acute and long-term bipolar disorder, is involved in neuroprotection after ischemic stroke. Yet, its mechanism of action is still poorly understood, which was only limited to its modulatory effect on GSK pathway. Therefore, we initially analyzed the dose-dependent effects of lithium on neurological deficits, infarct volume, brain edema and blood-brain barrier integrity, along with neuronal injury and survival in mice subjected to focal cerebral ischemia. Thereafter, we investigated the involvement of the PI3K/Akt and MEK signal transduction pathways and their components. Our observations revealed that 2 mmol/kg lithium significantly improved post-ischemic brain tissue survival. Although, 2 mmol/kg lithium had no negative effect on brain microcirculation, 5 and 20 mmol/kg lithium reduced brain perfusion. Furthermore, supratherapeutic dose of lithium in 20 mmol/kg lead to animal death. In addition, improvement of brain perfusion with L-arginine, did not change the effect of 5 mmol/kg lithium on brain injury. Additionally, post-stroke blood-brain barrier leakage, hemodynamic impairment and apoptosis have been reversed by lithium treatment. Interestingly, lithium-induced neuroprotection was associated with increased phosphorylation of Akt at Thr308 and suppressed GSK-3ß phosphorylation at Ser9 residue. Lithium upregulated Erk-2 and downregulated JNK-2 phosphorylation. To distinguish whether neuroprotective effects of lithium are modulated by PI3K/Akt or MEK, we sequentially blocked these pathways and demonstrated that the neuroprotective activity of lithium persisted during MEK/ERK inhibition, whereas PI3K/Akt inhibition abolished neuroprotection. Collectively, we demonstrated lithium exerts its post-stroke neuroprotective activity via the PI3K/Akt pathway, specifically via Akt phosphorylation at Thr308, but not via MEK/ERK.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Apoptosis , Isquemia Encefálica/metabolismo , Infarto Cerebral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Litio/farmacología , Litio/uso terapéutico , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Accidente Cerebrovascular/complicaciones
4.
Exp Neurol ; 358: 114221, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36075453

RESUMEN

The phosphodiesterase (PDE) superfamily comprises enzymes responsible for the cAMP and cGMP degradation to AMP and GMP. PDEs are abundant in the brain, where they are involved in several neuronal functions. High PDE10A abundance was previously observed in the striatum; however its consequences for stroke recovery were unknown. Herein, we evaluated the effects of PDE10A deactivation by TAK-063 (0.3 or 3 mg/kg, initiated 72 h post-stroke) in mice exposed to intraluminal middle cerebral artery occlusion. We found that PDE10A deactivation over up to eight weeks dose-dependently increased long-term neuronal survival, angiogenesis, and neurogenesis in the peri-infarct striatum, which represents the core of the middle cerebral artery territory, and reduced astroglial scar formation, whole brain atrophy and, more specifically, striatal atrophy. Functional motor-coordination recovery and the long-distance plasticity of pyramidal tract axons, which originate from the contralesional motor cortex and descend through the contralesional striatum to innervate the ipsilesional facial nucleus, were enhanced by PDE10A deactivation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed a set of dopamine receptor-related and neuronal plasticity-related PDE10A targets, which were elevated (e.g., protein phosphatase-1 regulatory subunit 1B) or reduced (e.g., serine/threonine protein phosphatase 1α, ß-synuclein, proteasome subunit α2) by PDE10A deactivation. Our results identify PDE10A as a therapeutic target that critically controls post-ischemic brain tissue remodeling and plasticity.


Asunto(s)
Ataque Isquémico Transitorio , Hidrolasas Diéster Fosfóricas , Accidente Cerebrovascular , Adenosina Monofosfato/metabolismo , Animales , Atrofia , Cromatografía Liquida , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Fosfatasa 1/metabolismo , Tractos Piramidales/metabolismo , Receptores Dopaminérgicos/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Espectrometría de Masas en Tándem , Sinucleína beta/metabolismo
5.
Behav Brain Res ; 392: 112719, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32479849

RESUMEN

Apart from its well-established therapeutic activity on bipolar disorder and depression, lithium exerts neuroprotective activity upon neurodegenerative disorders, such as traumatic brain injury (TBI). However, the cellular signaling mechanisms mediating lithium's neuroprotective activity and long-term dose- and time-dependent effects on close and remote proximity are largely unknown. Herein, we tested prophylactic and acute effects of lithium (2 mmol/kg) after cold- induced TBI. In both conditions, treatments with lithium resulted in reduced infarct volume and apoptosis. Its acute treatment resulted in the increase of Akt, ERK-1/2 and GSK-3 α/ß phosphoylations. Interestingly, its prophylactic treatment instead resulted in decreased phosphorylations of Akt, ERK-1/2, p38, JNK-1 moderately and GSK-3 α/ß significantly. Then, we tested subacute (35-day follow-up) role of low (0.2 mmol/kg) and high dose (2 mmol/kg) lithium and revealed that high dose lithium group was the most mobile so the least depressed in the tail suspension test. Anxiety level was assessed by light-dark test, all groups' anxiety levels were decreased with time, but lithium had no effect on anxiety like behavior. When subacute effects of injury and drug treatment were evaluated on the defined brain regions, infarct volume was decreased in the high dose lithium group significantly. In contrast to other brain regions, hippocampal atrophies were observed in both lithium treatment groups, which were significant in the low dose lithium group in both hemispheres, which was associated with the reduced cell proliferation and neurogenesis. Our data demonstrate that lithium treatment protects neurons from TBI. However, long term particularly low-dose lithium causes hippocampal atrophy and decreased neurogenesis.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Litio/farmacología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/metabolismo , Litio/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Biomedicines ; 8(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028692

RESUMEN

Cisplatin (CP) is one of the most preferred platinum-containing antineoplastic drugs. However, even in nontoxic plasma concentrations, it may cause kidney injury. To be able to increase its effective pharmacological dose, its side effects need to be regarded. Diet restriction (DR) has been demonstrated to improve cellular survival in a number of disorders. In this context, we investigated the role of DR in CP-induced nephrotoxicity (CPN). Besides alternate DR, animals were exposed to DR for 3 days prior or after CP treatment. Here, we observed that both 3 days of DR reverses the nephrotoxic effect of CP, which was associated with improved physiological outcomes, such as serum creatine, blood-urea nitrogen and urea. These treatments significantly increased phosphorylation of survival kinases PI3K/Akt and ERK-1/2 and decreased the level of stress kinase JNK were noted. In addition, the activation level of signal transduction mediator p38 MAPK phosphorylation was higher particularly in both three-day DR groups. Next, animals were fed with carbohydrate-, protein- or fat-enriched diets in the presence of CP. Results indicated that not only fasting but also dietary content itself may play a determinant role in the severity of CPN. Our data suggest that DR is a promising approach to reduce CPN by regulating metabolism and cell signaling pathways.

7.
Sci Rep ; 9(1): 19082, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836786

RESUMEN

The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αß, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Melatonina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa/deficiencia , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oxígeno , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
8.
Front Cell Neurosci ; 13: 144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031599

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) has gained interest as a non-invasive treatment for stroke based on the data promoting its effects on functional recovery. However, the exact action mechanisms by which the rTMS exert beneficial effects in cellular and molecular aspect are largely unknown. To elucidate the effects of high- and low-frequency rTMS in the acute-ischemic brain, we examined how rTMS influences injury development, cerebral blood flow (CBF), DNA fragmentation, neuronal survival, pro- and anti-apoptotic protein activations after 30 and 90 min of focal cerebral ischemia. In addition, inflammation, angiogenesis, growth factors and axonal outgrowth related gene expressions, were analyzed. Furthermore, we have investigated the effects of rTMS on post-acute ischemic brain, particularly on spontaneous locomotor activity, perilesional tissue remodeling, axonal sprouting of corticobulbar tracts, glial scar formation and cell proliferation, in which rTMS was applied starting 3 days after the stroke onset for 28 days. In the high-frequency rTMS received animals reduced DNA fragmentation, infarct volume and improved CBF were observed, which were associated with increased Bcl-xL activity and reduced Bax, caspase-1, and caspase-3 activations. Moreover, increased angiogenesis, growth factors; and reduced inflammation and axonal sprouting related gene expressions were observed. These results correlated with reduced microglial activation, neuronal degeneration, glial scar formation and improved functional recovery, tissue remodeling, contralesional pyramidal tract plasticity and neurogenesis in the subacute rTMS treated animals. Overall, we propose that high-frequency rTMS in stroke patients can be used to promote functional recovery by inducing the endogenous repair and recovery mechanisms of the brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA