Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2311733121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285951

RESUMEN

In contrast to prevalent strategies which make use of ß-sheet mimetics to block Aß fibrillar growth, in this study, we designed a series of sulfonyl-γ-AApeptide helices that targeted the crucial α-helix domain of Aß13-26 and stabilized Aß conformation to avoid forming the neurotoxic Aß oligomeric ß-sheets. Biophysical assays such as amyloid kinetics and TEM demonstrated that the Aß oligomerization and fibrillation could be greatly prevented and even reversed in the presence of sulfonyl-γ-AApeptides in a sequence-specific and dose-dependent manner. The studies based on circular dichroism, Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) spectra unambiguously suggested that the sulfonyl-γ-AApeptide Ab-6 could bind to the central region of Aß42 and induce α-helix conformation in Aß. Additionally, Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was employed to rule out a colloidal mechanism of inhibitor and clearly supported the capability of Ab-6 for inhibiting the formation of Aß aggregated forms. Furthermore, Ab-6 could rescue neuroblastoma cells by eradicating Aß-mediated cytotoxicity even in the presence of pre-formed Aß aggregates. The confocal microscopy demonstrated that Ab-6 could still specifically bind Aß42 and colocalize into mitochondria in the cellular environment, suggesting the rescue of cell viability might be due to the protection of mitochondrial function otherwise impaired by Aß42 aggregation. Taken together, our studies indicated that sulfonyl-γ-AApeptides as helical peptidomimetics could direct Aß into the off-pathway helical secondary structure, thereby preventing the formation of Aß oligomerization, fibrillation and rescuing Aß induced cell cytotoxicity.


Asunto(s)
Amidas , Péptidos beta-Amiloides , Amiloide , Amiloide/química , Conformación Proteica en Hélice alfa , Conformación Molecular , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo
2.
Phys Rev Lett ; 132(24): 240804, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949351

RESUMEN

The recovery of an unknown density matrix of large size requires huge computational resources. State-of-the-art performance has recently been achieved with the factored gradient descent (FGD) algorithm and its variants since they are able to mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite the theoretical guarantee of a linear convergence rate, convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number κ of the ground truth state. Consequently, the total number of iterations needed to achieve the estimation error ϵ can be as large as O(sqrt[κ]ln(1/ϵ)). In this Letter, we derive a quantum state tomography scheme that improves the dependence on κ to the logarithmic scale. Thus, our algorithm can achieve the approximation error ϵ in O(ln(1/κϵ)) steps. The improvement comes from the application of nonconvex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by the numerical results.

3.
Chemistry ; 30(61): e202402302, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39327935

RESUMEN

Antibiotic resistance has been threatening public health for a long period, while the COVID pandemic aggravated the scenario. To combat antibiotic resistance strains, host defense peptides (HDPs) mimicking molecules have attracted considerable attention. Herein, we reported a series of polycarbonates bearing cationic lysine amino acid residues that could mimic the mechanism of action of HDPs and possess broad-spectrum antimicrobial activity. Moreover, those polymers had negligible toxicity toward red blood cells and mammalian cells. The membrane-disruption mechanism endows the lysine-containing polycarbonates with low possibility of resistance development and the fast killing kinetics, making them promising candidates for antimicrobial development.


Asunto(s)
Lisina , Cemento de Policarboxilato , Lisina/química , Humanos , Cemento de Policarboxilato/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Eritrocitos/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Animales
4.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594674

RESUMEN

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Asunto(s)
Diabetes Mellitus , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Número de Embarazos , Oxitocina/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Proteómica , Receptores de Oxitocina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Phys Chem Chem Phys ; 26(11): 8932-8937, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38433622

RESUMEN

Traditional half-Heusler thermoelectric materials, identified as 18-electron compounds, are characterized by the high power factor and the high lattice thermal conductivity. Interestingly, the emerging 19-electron half-Heusler compounds were also found to be promising thermoelectric materials, but with a 5-10 times lower lattice thermal conductivity. Since the two kinds of compounds have similar chemical and physical structures, such as TiCoSb and VCoSb, the large difference in lattice thermal conductivity is a puzzling question. Here, we present a theoretical study to clarify the lattice thermal transport in half-Heusler thermoelectric materials. Based on electronic band structure analysis, we show that the two transition-metal elements in half-Heusler compounds form the strong and direct d-d interaction that is responsible for the high lattice thermal conductivity of 18-electron compounds. In 19-electron half-Heusler compounds, however, the extra valence electron enters the d-d antibonding states, which significantly weakens the atomic bond strength, leading to a large decrease in the cohesive energy. The resulting softened acoustic phonons enhance the phonon-phonon scattering, and thus reduce the lattice thermal conductivity significantly. By constructing an artificial 18-e compound V0.5Sc0.5CoSb, it is proved that the one less electron relative to VCoSb increases the lattice thermal conductivity significantly.

6.
BMC Health Serv Res ; 24(1): 1167, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363315

RESUMEN

BACKGROUND AND AIM: China has used traditional Chinese medicine (TCM) to treat diseases for more than 2000 years. Traditionally, TCMs in medicine cabinets are arranged alphabetically or on the basis of experience, but this arrangement greatly affects dispensing efficiency. However, owing to the unique properties and qualities of TCM, very few automatic approaches or systems have specifically addressed TCM dispensing problems. Therefore, it is necessary to establish a method of optimizing the traditional Chinese medicine placement scheme (TCMPS) via computer algorithms to improve the work efficiency of pharmacists. METHODS: A prescription dataset from a hospital in 2022 was obtained, and the association rule algorithm (ARA) was used to calculate the frequency of use for each type of TCM and the associations between different types of TCMs. On the basis of these association and frequency data, the optimal TCMPS was calculated using the simulated annealing algorithm (SAA) and then verified using the prescription dataset from 2023. RESULTS: A total of 10,601 prescriptions were collected in 2022, involving 360 different TCMs, and each prescription contained an average of 9.485 TCMs, with Danggui (3628) being the most frequently used. When the threshold of support was set to 0.05 and the confidence was set to 0.8, 78 couplet medicines used in orthopedics clinics were found through ARA. When the threshold value of support was set to 0, the confidence was set to 0, and the rule length was 2, a total of 129,240 rules were obtained, indicating support between all pairwise TCMs. The TCMPS, calculated using SAA, had a correlation sum of 14.183 and a distance sum of 3.292. The TCMPS was verified using a prescription dataset from 2023 and theoretically improved the dispensing efficiency of pharmacists by approximately 50%. CONCLUSIONS: In this study, the ARA and SAA were successfully applied to pharmacies for the first time, and the optimal TCMPS was calculated. This approach not only significantly improves the dispensing efficiency of pharmacists and reduces patient waiting time but also enhances the quality of medical services and patient satisfaction, and provides a valuable reference for the development of smart medicine.


Asunto(s)
Algoritmos , Medicina Tradicional China , Medicina Tradicional China/métodos , Humanos , China , Servicio de Farmacia en Hospital , Medicamentos Herbarios Chinos/normas , Medicamentos Herbarios Chinos/uso terapéutico , Prescripciones de Medicamentos/estadística & datos numéricos , Prescripciones de Medicamentos/normas
7.
Chem Soc Rev ; 52(15): 4843-4877, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37401344

RESUMEN

Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-ß-alanine, ß-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Aminoácidos/química , Amidas , Ácidos
8.
J Am Chem Soc ; 145(36): 20009-20020, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665648

RESUMEN

The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.


Asunto(s)
Química Farmacéutica , Transducción de Señal , Humanos , Perfilación de la Expresión Génica , Hipoxia
9.
Mol Carcinog ; 62(7): 1025-1037, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37042566

RESUMEN

It has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient-derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA-seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial-mesenchymal transition, and TNF-α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP-bound RAS level underwent rebound even in BI3406-sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1-targeting agents in CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteína SOS1/genética , Proteína SOS1/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
10.
Chemistry ; 29(35): e202300476, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36920943

RESUMEN

SARS-CoV-2 is still wreaking havoc all over the world with surging morbidity and high mortality. The main protease (Mpro ) is essential in the replication of SARS-CoV-2, enabling itself an active target for antiviral development. Herein, we reported the design and synthesis of a new class of peptidomimetics-constrained α, γ-AA peptides, based on which a series of aldehyde and ketoamide inhibitors of the Mpro of SARS-CoV-2 were prepared. The lead compounds showed excellent inhibitory activity in the FRET-based Mpro enzymatic assay not only for the Mpro of SARS-CoV-2 but also for SARS-CoV and MERS-CoV, along with HCoVs like HCoV-OC43, HCoV-229E, HCoV-NL63 and HKU1. The X-ray crystallographic results demonstrated that our compounds form a covalent bond with the catalytic Cys145. They also demonstrated effective antiviral activity against live SARS-CoV-2. Overall, the results suggest that α, γ-AA peptide could be a promising molecular scaffold in designing novel Mpro inhibitors of SARS-CoV-2 and other coronaviruses.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Péptidos/farmacología , Antivirales/farmacología , Inhibidores de Proteasas/química
11.
Bioorg Med Chem Lett ; 87: 129255, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965536

RESUMEN

EP2 is a G protein-coupled receptor for prostaglandin E2 (PGE2) derived from cell membrane-released arachidonic acid upon various harmful and injurious stimuli. It is commomly upregulated in tumors and injured brain tissues, as its activation by PGE2 is widely believed to be involved in the pathophysiological mechanisms underlying these conditions via promoting pro-inflammatory reactions. Herein, we report the discovery of two novel macrocyclic peptidomimetics based on the screening of a cyclic γ-AApeptides combinatorial library. These two cyclic γ-AApeptides showed excellent binding affinity with the EP2 protein, and they may lead to the development of novel therapeutic agents and/or molecular probes to modulate the PGE2/EP2 signaling.


Asunto(s)
Dinoprostona , Neoplasias , Humanos , Dinoprostona/metabolismo , Ligandos , Transducción de Señal , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo
12.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047380

RESUMEN

Antibiotic resistance is one of the most significant issues encountered in global health. There is an urgent demand for the development of a new generation of antibiotic agents combating the emergence of drug resistance. In this article, we reported the design of lipidated dendrimeric γ-AApeptides as a new class of antimicrobial agents. These AApeptides showed excellent potency and broad-spectrum activity against both Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The mechanistic studies revealed that the dendrimeric AApeptides could kill bacteria rapidly through the permeabilization of bacterial membranes, analogous to host-defense peptides (HDPs). These dendrimers also did not induce antibiotic resistance readily. The easy access to the synthesis, together with their potent and broad-spectrum activity, make these lipidated dendrimeric γ-AApeptides a new generation of antibacterial agents.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Peptidomiméticos , Peptidomiméticos/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
13.
J Am Chem Soc ; 144(1): 270-281, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968032

RESUMEN

Angiogenesis, formation of new blood vessels from the existing vascular network, is a hallmark of cancer cells that leads to tumor vascular proliferation and metastasis. This process is mediated through the binding interaction of VEGF-A with VEGF receptors. However, the balance between pro-angiogenic and anti-angiogenic effect after ligand binding yet remains elusive and is therefore challenging to manipulate. To interrogate this interaction, herein we designed a few sulfono-γ-AA peptide based helical peptidomimetics that could effectively mimic a key binding interface on VEGF (helix-α1) for VEGFR recognition. Intriguingly, although both sulfono-γ-AA peptide sequences V2 and V3 bound to VEGF receptors tightly, in vitro angiogenesis assays demonstrated that V3 potently inhibited angiogenesis, whereas V2 activated angiogenesis effectively instead. Our findings suggested that this distinct modulation of angiogenesis might be due to the result of selective binding of V2 to VEGFR-1 and V3 to VEGFR-2, respectively. These molecules thus provide us a key to switch the angiogenic signaling, a biological process that balances the effects of pro-angiogenic and anti-angiogenic factors, where imbalances lead to several diseases including cancer. In addition, both V2 and V3 exhibited remarkable stability toward proteolytic hydrolysis, suggesting that V2 and V3 are promising therapeutic agents for the intervention of disease conditions arising due to angiogenic imbalances and could also be used as novel molecular switching probes to interrogate the mechanism of VEGFR signaling. The findings also further demonstrated the potential of sulfono-γ-AA peptides to mimic the α-helical domain for protein recognition and modulation of protein-protein interactions.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular
14.
Chembiochem ; 23(22): e202200298, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36006398

RESUMEN

Sulfono-γ-AApeptides recently developed in our group have been proven to be a new class of unnatural foldamer with well-defined helical structure and have been demonstrated to mimic protein helical domains and disrupt biomedically relevant protein-protein interactions (PPIs). Based on our design concept in a recent report, we discovered two similar sulfono-γ-AApeptides V2 and V3 which were designed to mimic the VEGF N-terminal helix α1 known to directly interact with VEGFRs. Interestingly, V2 was shown to possess the pro-angiogenic effect, whereas V3 was proved to be a potent inhibitor for angiogenesis. We speculate that the distinct angiogenesis signaling was due to the selective binding of the two molecules to VEGFR1 and VEGFR2, respectively. Together with their remarkable resistance to proteolytic degradation, relatively small sizes, and amenability to modification with diverse functional groups, V2 and V3 could serve as lead molecules for the development of potential therapeutic agents and molecular probes. These findings highlight sulfono-γ-AApeptides as an alternative paradigm to mimic the α-helical domain to modulate a wide variety of PPIs in the future.


Asunto(s)
Sondas Moleculares , Péptido Hidrolasas , Dominios Proteicos , Proteolisis , Transducción de Señal
15.
J Nanobiotechnology ; 20(1): 129, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279133

RESUMEN

BACKGROUND: Although concurrent chemoradiotherapy (CRT), as one of the most effective antineoplastic therapies in clinic, can successfully inhibit the growth of tumor cells, a risk of developing secondary tumor is still an insurmountable barrier in clinical practice. RESULTS: Herein, a new platinum prodrug composed of tannic acid (TA) and Pt2+ (TA-Pt) complex film was synthesized on the surface of Fe2O3 nanoparticles (NPs) with excellent stability and biocompatibility for enhanced CRT. In this system, TA-Pt complex could respond to the tumor acidic microenvironment and damage the DNA of tumor cells. Moreover, the internal iron core not only improved the effect of subsequent radiotherapy (RT), but also disrupted the iron balance in cells, inducing intracellular ferroptosis and eliminating apoptosis-resistant cells. In vitro and vivo experimental results indicated that more than 90% of tumor cells were depleted and more than 75% of the cured tumor-bearing mice evinced no recurrence or metastasis. CONCLUSIONS: This work offered a new idea for combining the effective chemotherapy, RT and ferroptosis therapy to enhance the curative effect of CRT and inhibit tumor recurrence and metastasis.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Quimioradioterapia , Cisplatino/farmacología , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Platino (Metal)/farmacología , Profármacos/farmacología , Microambiente Tumoral
16.
J Clin Lab Anal ; 36(11): e24714, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36164726

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the cancers with a high mortality rate. CircRNAs have emerged as an important regulatory factor in tumorigenesis in recent years. However, the detailed regulatory mechanism of a circular RNA cullin 2 (hsa_circ_0018189; hsa_circ_0018189) is still unclear in NSCLC. METHODS: RNA levels of hsa_circ_0018189, microRNA (miR)-656-3p, and Solute carrier family seven member 11 (SLC7A11, xCT) were analyzed by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and protein level was assessed by Western blot and immunohistochemical assay. Enzyme-linked immunosorbent assay was conducted to detect cell glutamine metabolism. Effects of hsa_circ_0018189 on cell proliferation, apoptosis, migration, and invasion were analyzed by corresponding assays. Luciferase reporter assay and RNA-immunoprecipitation assay confirmed the target relationship between miR-656-3p and hsa_circ_0018189 or xCT. The in vivo function of hsa_circ_0018189 was verified by xenograft mouse models. RESULTS: Hsa_circ_0018189 abundance was overexpressed in NSCLC cells and samples. Deficiency of hsa_circ_0018189 lowered NSCLC cell proliferative, migrating, invading, and glutamine metabolism capacities, and hsa_circ_0018189 silencing inhibited the growth of tumors in vivo. Hsa_circ_0018189 could up-regulate xCT by sponging miR-656-3p. And miR-656-3p downregulation or xCT overexpression partly overturned hsa_circ_0018189 knockdown or miR-656-3p mimic-mediated repression of NSCLC cell malignancy. CONCLUSION: Hsa_circ_0018189 drove NSCLC growth by interacting with miR-656-3p and upregulating xCT.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/genética , Glutamina/metabolismo , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Sistema de Transporte de Aminoácidos y+/genética
17.
Proc Natl Acad Sci U S A ; 116(22): 10757-10762, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31088961

RESUMEN

The rational design of α-helix-mimicking peptidomimetics provides a streamlined approach to discover potent inhibitors for protein-protein interactions (PPIs). However, designing cell-penetrating long peptidomimetic scaffolds equipped with various functional groups necessary for interacting with large protein-binding interfaces remains challenging. This is particularly true for targeting ß-catenin/BCL9 PPIs. Here we designed a series of unprecedented helical sulfono-γ-AApeptides that mimic the binding mode of the α-helical HD2 domain of B Cell Lymphoma 9 (BCL9). Our studies show that sulfono-γ-AApeptides can structurally and functionally mimic the α-helical domain of BCL9 and selectively disrupt ß-catenin/BCL9 PPIs with even higher potency. More intriguingly, these sulfono-γ-AApeptides can enter cancer cells, bind with ß-catenin and disrupt ß-catenin/BCL9 PPIs, and exhibit excellent cellular activity, which is much more potent than the BCL9 peptide. Furthermore, our enzymatic stability studies demonstrate the remarkable stability of the helical sulfono-γ-AApeptides, with no degradation in the presence of pronase for 24 h, augmenting their biological potential. This work represents not only an example of helical sulfono-γ-AApeptides that mimic α-helix and disrupt protein-protein interactions, but also an excellent example of potent, selective, and cell-permeable unnatural foldameric peptidomimetics that disrupt the ß-catenin/BCL9 PPI. The design of helical sulfono-γ-AApeptides may lead to a new strategy to modulate a myriad of protein-protein interactions.


Asunto(s)
Péptidos , Unión Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Peptidomiméticos , Mapas de Interacción de Proteínas/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores
18.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269905

RESUMEN

Studies on the effective and safe therapeutic dosage of delta-9-tetrahydrocannabinol (THC) for the treatment of Alzheimer's disease (AD) have been sparse due to the concern about THC's psychotropic activity. The present study focused on demonstrating the beneficial effect of low-dose THC treatment in preclinical AD models. The effect of THC on amyloid-ß (Aß) production was examined in N2a/AßPPswe cells. An in vivo study was conducted in aged APP/PS1 transgenic mice that received an intraperitoneal injection of THC at 0.02 and 0.2 mg/kg every other day for three months. The in vitro study showed that THC inhibited Aß aggregation within a safe dose range. Results of the radial arm water maze (RAWM) test demonstrated that treatment with 0.02 and 0.2 mg/kg of THC for three months significantly improved the spatial learning performance of aged APP/PS1 mice in a dose-dependent manner. Results of protein analyses revealed that low-dose THC treatment significantly decreased the expression of Aß oligomers, phospho-tau and total tau, and increased the expression of Aß monomers and phospho-GSK-3ß (Ser9) in the THC-treated brain tissues. In conclusion, treatment with THC at 0.2 and 0.02 mg/kg improved the spatial learning of aged APP/PS1 mice, suggesting low-dose THC is a safe and effective treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Dronabinol , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Dronabinol/farmacología , Dronabinol/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Presenilina-1/genética , Presenilina-1/metabolismo
19.
Small ; 17(38): e2102695, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34350694

RESUMEN

The hyperactive energy metabolism mostly contributes the tumor cells growth and proliferation. Herein, the intelligent nanoparticles (P-B-D NPs) obtained by loading BAY-876 and doxorubicin (Dox)-Duplex into nanoparticles composed of disulfide bond (SS) containing polymer are reported, which provide an efficient resistance of tumor cells energy metabolism and tumor growth to conquer malignant tumor. In response to the reducing microenvironment of tumor tissue, the SS bond can be disintegrated by intracellular glutathione to block the synthesis of lipid repair enzyme-glutathione peroxidase 4 for ferroptosis therapy. More importantly, the released BAY-876 can inhibit the functionality of glucose transporter 1, restricting the glucose uptake of tumor cells to a low energy metabolism status. Meanwhile, Dox-Duplex can interact with ATP to reduce intracellular ATP content and release Dox to kill tumor cells. Collectively, this work offers a new idea for restricting tumor cells energy metabolism to inhibit their proliferation.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
20.
Acc Chem Res ; 53(10): 2425-2442, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32940995

RESUMEN

Foldamers have defined and predictable structures, improved resistance to proteolytic degradation, enhanced chemical diversity, and are versatile in their mimicry of biological molecules, making them promising candidates in biomedical and material applications. However, as natural macromolecules exhibit endless folding structures and functions, the exploration of the applications of foldamers remains crucial. As such, it is imperative to continue to discover unnatural foldameric architectures with new frameworks and molecular scaffolds. To this end, we recently developed a new class of peptidomimetics termed ″γ-AApeptides", oligomers of γ-substituted-N-acylated-N-aminoethyl amino acids, which are inspired by the chiral peptide nucleic acid backbone. To date γ-AApeptides have been shown to be resistant to proteolytic degradation and possess limitless potential to introduce chemically diverse functional groups, demonstrating promise in biomedical and material sciences. However, the structures of γ-AApeptides were initially unknown, rendering their rational design for the mimicry of a protein helical domain impossible in the beginning, which limited their potential development. To our delight, in the past few years, we have obtained a series of crystal structures of helical sulfono-γ-AApeptides, a subclass of γ-AApeptides. The single-crystal X-ray crystallography indicates that sulfono-γ-AApeptides fold into unprecedented and well-defined helices with unique helical parameters. On the basis of the well-established size, shape, and folding conformation, the design of sulfono-γ-AApeptide-based foldamers opens a new avenue for the development of alternative unnatural peptidomimetics for their potential applications in chemistry, biology, medicine, materials science, and so on.In this Account, we will outline our journey on sulfono-γ-AApeptides and their application as helical mimetics. We will first briefly introduce the design and synthetic strategy of sulfono-γ-AApeptides and then describe the crystal structures of helical sulfono-γ-AApeptides, including left-handed homogeneous sulfono-γ-AApeptides, right-handed 1:1 α/sulfono-γ-AA peptide hybrids, and right-handed 2:1 α/sulfono-γ-AA peptide hybrids. After that, we will illustrate the potential of helical sulfono-γ-AApeptides for biological applications such as the disruption of medicinally relevant protein-protein interactions (PPIs) of BCL9-ß-catenin and p53-MDM2/MDMX as well as the mimicry of glucagon-like peptide 1 (GLP-1). In addition, we also exemplify their potential application in material science. We expect that this Account will shed light on the structure-based design and function of helical sulfono-γ-AApeptides, which can provide a new and alternative way to explore and generate novel foldamers with distinctive structural and functional properties.


Asunto(s)
Péptidos/química , Peptidomiméticos , Secuencia de Aminoácidos , Animales , Glucemia/análisis , Cristalografía por Rayos X , Péptido 1 Similar al Glucagón/química , Prueba de Tolerancia a la Glucosa , Enlace de Hidrógeno , Ratones , Conformación Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA