Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7841): 214-219, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408416

RESUMEN

Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.

2.
Proc Natl Acad Sci U S A ; 121(29): e2400898121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980900

RESUMEN

Precise electrochemical synthesis of commodity chemicals and fuels from CO2 building blocks provides a promising route to close the anthropogenic carbon cycle, in which renewable but intermittent electricity could be stored within the greenhouse gas molecules. Here, we report state-of-the-art CO2-to-HCOOH valorization performance over a multiscale optimized Cu-Bi cathodic architecture, delivering a formate Faradaic efficiency exceeding 95% within an aqueous electrolyzer, a C-basis HCOOH purity above 99.8% within a solid-state electrolyzer operated at 100 mA cm-2 for 200 h and an energy efficiency of 39.2%, as well as a tunable aqueous HCOOH concentration ranging from 2.7 to 92.1 wt%. Via a combined two-dimensional reaction phase diagram and finite element analysis, we highlight the role of local geometries of Cu and Bi in branching the adsorption strength for key intermediates like *COOH and *OCHO for CO2 reduction, while the crystal orbital Hamiltonian population analysis rationalizes the vital contribution from moderate binding strength of η2(O,O)-OCHO on Cu-doped Bi surface in promoting HCOOH electrosynthesis. The findings of this study not only shed light on the tuning knobs for precise CO2 valorization, but also provide a different research paradigm for advancing the activity and selectivity optimization in a broad range of electrosynthetic systems.

3.
Nature ; 582(7813): 501-505, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32541968

RESUMEN

Quantum key distribution (QKD)1-3 is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long4-7. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away8-10. However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres11,12. The use of trusted relays can extend these distances from across a typical metropolitan area13-16 to intercity17 and even intercontinental distances18. However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security19,20. Long-distance entanglement distribution can be realized using quantum repeaters21, but the related technology is still immature for practical implementations22. The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient23 enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels24,25. Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.

4.
EMBO Rep ; 24(4): e56932, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36862324

RESUMEN

Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid ß-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.


Asunto(s)
Ácidos Grasos , Inflamación , Animales , Ratones , Ratones Obesos , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Glucólisis , Ubiquitina-Proteína Ligasas/metabolismo , Oxidación-Reducción
5.
J Biol Chem ; 299(1): 102781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496074

RESUMEN

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Asunto(s)
Empalme Alternativo , Retículo Endoplásmico , Proteínas de la Membrana , Cationes/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación de la Expresión Génica/genética
6.
Anal Chem ; 96(25): 10111-10115, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869290

RESUMEN

The Si window is the most widely used internal reflection element (IRE) for electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), yet local chemical etching on Si by concentrated OH- anions bottlenecks the reliable application of this method in strong alkaline electrolytes. In this report, atomic layer deposition of a 25 nm nonconductive TiO2 barrier layer on the reflecting plane of a Si prism is demonstrated to address this challenge. In situ ATR-SEIRAS measurement on a Au film electrode with the Si/TiO2 composite IRE in 1 M NaOH reveals reversible global spectral features without spectral distortion at 1000-1300 cm-1, in stark contrast to those obtained with a bare Si window. By applying this structured ATR-SEIRAS, ethanol electrooxidation on a Pt/C catalyst in 1 and 5 M NaOH is explored, manifesting that such high pH values prevent the adsorption of as-formed acetate in the C2 pathway but not that of CO intermediate in the C1 pathway.

7.
Bioconjug Chem ; 35(5): 604-615, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38661725

RESUMEN

Chimeric antigen receptor T-cell (CAR-T cell) therapy has become a promising treatment option for B-cell hematological tumors. However, few optional target antigens and disease relapse due to loss of target antigens limit the broad clinical applicability of CAR-T cells. Here, we conjugated an antibody (Ab) fusion protein, consisting of an Ab domain and a SpyCatcher domain, with the FITC-SpyTag (FITC-ST) peptide to form a bispecific safety switch module using a site-specific conjugation system. We applied the safety switch module to target CD19, PDL1, or Her2-expressing tumor cells by constructing FMC63 (anti-CD19), antiPDL1, or ZHER (anti-Her2)-FITC-ST, respectively. Those switch modules significantly improved the cytotoxic effects of anti-FITC CAR-T cells on tumor cells. Additionally, we obtained the purified CD8+ T cells by optimizing a shorter version of the CD8-binding aptamer to generate anti-FITC CD8-CAR-T cells, which combined with the CD4-FITC-ST switch module (anti-CD4) to eliminate the CD4-positive tumor cells in vitro and in vivo. Overall, we established a novel safety switch module by site-specific conjugation to enhance the antitumor function of universal CAR-T cells, thereby expanding the application scope of CAR-T therapy and improving its safety and efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/inmunología , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Receptor ErbB-2/inmunología
8.
Opt Express ; 32(7): 12601-12608, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571078

RESUMEN

Silicon avalanche photodiode (APD) single-photon detectors in space are continuously affected by radiation, which gradually degrades their dark count performance. From August 2016 to June 2023, we conducted approximately seven years (2507 days) of in-orbit monitoring of the dark count performance of APD single-photon detectors on the Micius Quantum Science Experimental Satellite. The results showed that due to radiation effects, the dark count growth rate was approximately 6.79 cps/day @ -24 °C and 0.37 cps/day @ -55 °C, with a significant suppression effect on radiation-induced dark counts at lower operating temperature. Based on the proposed radiation damage induced dark count annealing model, simulations were conducted for the in-orbit dark counts of the detector, the simulation results are consistent with in-orbit test data. In May 2022, four of these detectors underwent a cumulative 5.7 hours high-temperature annealing test at 76 °C, dark count rate shows no measurable changes, consistent with annealing model. As of now, these ten APD single-photon detectors on the Micius Quantum Science Experimental Satellite have been in operation for approximately 2507 days and are still functioning properly, providing valuable experience for the future long-term space applications of silicon APD single-photon detectors.

9.
Ann Hematol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990294

RESUMEN

The MEF2D rearrangement is a recurrent chromosomal abnormality detected in approximately 2.4-5.3% of patients with acute B-cell lymphoblastic leukemia (B-ALL). Currently, MEF2D-rearranged B-ALL is not classified as an independent subtype in the WHO classification. Consequently, the clinical significance of MEF2D rearrangement in B-ALL remains largely unexplored. In this study, we retrospectively screened 260 B-ALL patients with RNA sequencing data collected between November 2018 and December 2022. Among these, 10 patients were identified with MEF2D rearrangements (4 with MEF2D::HNRNPUL1, 3 with MEF2D::BCL9, 1 with MEF2D::ARID1B, 1 with MEF2D::DAZAP1 and 1 with MEF2D::HNRNPM). Notably, HNRNPM and ARID1B are reported as MEF2D fusion partners for the first time. The patient with the MEF2D::HNRNPM fusion was resistant to chemotherapy and chimeric antigen receptor T-cell therapy and relapsed early after allogenic stem cell transplantation. The patient with MEF2D::ARID1B experienced early extramedullary relapse after diagnosis. All 10 patients achieved complete remission after induction chemotherapy. However, 9/10 (90%) of whom experienced relapse. Three of the 9 patients relapsed with aberrant expression of myeloid antigens. The median overall survival of these patients was only 11 months. This small cohort showed a high incidence of early relapse and short survival in patients with MEF2D rearrangements.

10.
Biotechnol Bioeng ; 121(1): 341-354, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37749931

RESUMEN

Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.


Asunto(s)
Células Artificiales , Dependovirus , Dependovirus/genética , Línea Celular , Transfección , Vectores Genéticos
11.
BMC Infect Dis ; 24(1): 399, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609858

RESUMEN

BACKGROUND: Immunosuppression is a leading cause of septic death. Therefore, it is necessary to search for biomarkers that can evaluate the immune status of patients with sepsis. We assessed the diagnostic and prognostic value of low-density neutrophils (LDNs) and myeloid-derived suppressor cells (MDSCs) subsets in the peripheral blood mononuclear cells (PBMCs) of patients with sepsis. METHODS: LDNs and MDSC subsets were compared among 52 inpatients with sepsis, 33 inpatients with infection, and 32 healthy controls to investigate their potential as immune indicators of sepsis. The percentages of LDNs, monocytic MDSCs (M-MDSCs), and polymorphonuclear MDSCs (PMN-MDSCs) in PBMCs were analyzed. Sequential organ failure assessment (SOFA) scores, C-reactive protein (CRP), and procalcitonin (PCT) levels were measured concurrently. RESULTS: The percentages of LDNs and MDSC subsets were significantly increased in infection and sepsis as compared to control. MDSCs performed similarly to CRP and PCT in diagnosing infection or sepsis. LDNs and MDSC subsets positively correlated with PCT and CRP levels and showed an upward trend with the number of dysfunctional organs and SOFA score. Non-survivors had elevated M-MDSCs compared with that of patients who survived sepsis within 28 days after enrollment. CONCLUSIONS: MDSCs show potential as a diagnostic biomarker comparable to CRP and PCT, in infection and sepsis, even in distinguishing sepsis from infection. M-MDSCs show potential as a prognostic biomarker of sepsis and may be useful to predict 28-day hospital mortality in patients with sepsis.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Humanos , Leucocitos Mononucleares , Pronóstico , Pacientes Internos , Diagnóstico Precoz , Sepsis/diagnóstico , Proteína C-Reactiva , Polipéptido alfa Relacionado con Calcitonina , Biomarcadores
12.
Environ Sci Technol ; 58(23): 10275-10286, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825773

RESUMEN

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Pez Cebra , Animales , Pez Cebra/metabolismo
13.
Appl Microbiol Biotechnol ; 108(1): 385, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896252

RESUMEN

Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.


Asunto(s)
Dependovirus , Proteómica , Dependovirus/genética , Humanos , Células HEK293 , Transcriptoma , Vectores Genéticos/genética , Cinética , Genoma Viral , Perfilación de la Expresión Génica , Proteoma
14.
J Cardiothorac Vasc Anesth ; 38(4): 982-991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350741

RESUMEN

OBJECTIVE: To investigate whether "sarcopenia," defined based on the preoperative skeletal muscle index (SMI), can predict major postoperative morbidity and all-cause mortality. DESIGN: A retrospective observational cohort study. SETTING: At the authors' Department of Critical Care Medicine. PARTICIPANTS: A total of 986 adult Chinese patients underwent cardiac surgery (coronary artery bypass graft, valve surgery, combined surgery, or aortic surgery) between January 2019 and August 2022. MEASUREMENTS AND MAIN RESULTS: The skeletal muscle area at the third lumbar level (L3) was measured via preoperative computed tomography (up to 3 months from the date of imaging to the date of surgery) and normalized to patient height (skeletal muscle index). Sarcopenia was determined based on the skeletal muscle index being in the lowest sex-specific quartile. The primary outcome was all-cause mortality. The secondary outcome was major morbidity. A total of 968 patients were followed for a median of 2.00 years, ranging from 1.06 to 2.90 years. After the follow-up, 76 patients died during the follow-up period. Multivariate Cox proportional analysis showed a relationship between sarcopenia (adjusted hazard ratio 1.80, 95% CI 1.04-3.11; p = 0.034) and all-cause mortality. Kaplan-Meier curves revealed a significantly lower survival rate in the sarcopenia group than in the nonsarcopenia group. Overall, 199 (20.6%) patients had major morbidity. Multivariate analysis showed a significant relationship between sarcopenia (adjusted odds ratio = 2.21, 95% CI 1.52∼3.22, p < 0.001) and major morbidity. CONCLUSIONS: Sarcopenia, defined by the skeletal muscle index, is associated with all-cause mortality and major morbidity after cardiac surgery, thereby suggesting the need for perioperative sarcopenia risk assessment for patients undergoing cardiac surgery to guide the prevention and management of adverse outcomes.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Sarcopenia , Masculino , Adulto , Femenino , Humanos , Sarcopenia/diagnóstico por imagen , Sarcopenia/epidemiología , Estudios Retrospectivos , Músculo Esquelético/diagnóstico por imagen , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Morbilidad , Pronóstico
15.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958633

RESUMEN

Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.

16.
Angew Chem Int Ed Engl ; 63(13): e202317740, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38318927

RESUMEN

Plasmon-mediated electrocatalysis that rests on the ability of coupling localized surface plasmon resonance (LSPR) and electrochemical activation, emerges as an intriguing and booming area. However, its development seriously suffers from the entanglement between the photoelectronic and photothermal effects induced by the decay of plasmons, especially under the influence of applied potential. Herein, using LSPR-mediated CO2 reduction on Ag electrocatalyst as a model system, we quantitatively uncover the dominant photoelectronic effect on CO2 reduction reaction over a wide potential window, in contrast to the leading photothermal effect on H2 evolution reaction at relatively negative potentials. The excitation of LSPR selectively enhances the CO faradaic efficiency (17-fold at -0.6 VRHE ) and partial current density (100-fold at -0.6 VRHE ), suppressing the undesired H2 faradaic efficiency. Furthermore, in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) reveals a plasmon-promoted formation of the bridge-bonded CO on Ag surface via a carbonyl-containing C1 intermediate. The present work demonstrates a deep mechanistic understanding of selective regulation of interfacial reactions by coupling plasmons and electrochemistry.

17.
Cancer Immunol Immunother ; 72(11): 3739-3753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707586

RESUMEN

CD19 CAR-T (chimeric antigen receptor-T) cell immunotherapy achieves a remission rate of approximately 70% in recurrent and refractory lymphoma treatment. However, the loss or reduction of CD19 antigen on the surface of lymphoma cells results in the escape of tumor cells from the immune killing of CD19 CAR-T cells (CAR19-T). Therefore, novel therapeutic strategies are urgently required. In this study, an anti-CD79b/CD3 bispecific antibody (BV28-OKT3) was constructed and combined with CAR19-T cells for B-cell lymphoma treatment. When the CD19 antigen was lost or reduced, BV28-OKT3 redirected CAR19-T cells to CD79b+ CD19- lymphoma cells; therefore, BV28-OKT3 overcomes the escape of CD79b+ CD19- lymphoma cells by the killing action of CAR19-T cells in vitro and in vivo. Furthermore, BV28-OKT3 triggered the antitumor function of CAR- T cells in the infusion product and boosted the antitumor immune response of bystander T cells, markedly improving the cytotoxicity of CAR19-T cells to lymphoma cells in vitro and in vivo. In addition, BV28-OKT3 elicited the cytotoxicity of donor-derived T cells toward lymphoma cells in vitro, which depended on the presence of tumor cells. Therefore, our findings provide a new clinical treatment strategy for recurrent and refractory B-cell lymphoma by combining CD79b/CD3 BsAb with CAR19-T cells.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Células B , Linfoma , Humanos , Linfocitos T , Antígenos CD19 , Muromonab-CD3 , Linfoma/tratamiento farmacológico , Inmunoterapia Adoptiva/métodos
18.
Breast Cancer Res Treat ; 197(1): 93-101, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309908

RESUMEN

PURPOSE: A substantial need for effective and safe treatment options is still unmet for patients with heavily pre-treated human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC). Herein, we assessed the efficacy and safety of pyrotinib plus trastuzumab and chemotherapy in patients with heavily treated HER2-positive MBC. METHODS: In this single-arm exploratory phase II trial, patients with HER2-positive MBC previously treated with trastuzumab plus lapatinib or pertuzumab, received pyrotinib plus trastuzumab and chemotherapy. The primary end point was progression-free survival (PFS) in the total population (TP). Secondary end points included PFS in the subgroup with brain metastases (Sub-BrM), confirmed objective response rate (ORR), clinical benefit rate (CBR), disease control rate (DCR), exploration of predictive factors of PFS, and safety. RESULTS: Between November 1, 2018, and March 31, 2021, 40 patients were eligible for this study. The median PFS reached 7.5 months (95% confidence interval [CI] 4.7 to 9.9 months) and 9.4 months (95% CI 6.6 to 12.1 months) in the TP and Sub-BrM, respectively. ORR was 50.5% (20/40). CBR was 75.5% (30/40) and DCR reached 97.5% (39/40). Cox univariate and multivariate analyses demonstrated that liver or/and lung metastases was the significant adverse prognostic factor for PFS (p = 0.018; p = 0.026; respectively). The most frequent grade 3 or 4 treatment-related adverse events were diarrhea, neutropenia and leukopenia. No new safety signals were observed. CONCLUSION: Pyrotinib plus trastuzumab and chemotherapy offered a promising option with manageable safety profile for heavily pre-treated HER2-positive MBC, especially for those without liver or/and lung metastases.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab , Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
19.
Radiology ; 308(2): e230457, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37642572

RESUMEN

Background Hepatocellular carcinomas (HCCs) can be divided into proliferative and nonproliferative types, which may have implications for outcomes after conventional transarterial chemoembolization (cTACE). Biopsy to identify proliferative HCC is not routinely performed before cTACE. Purpose To develop and validate a predictive model for identifying proliferative HCCs using CT imaging features and to compare therapeutic outcomes between predicted proliferative and nonproliferative HCCs after cTACE according to this model. Materials and Methods This retrospective multicenter study included adults with HCC who underwent liver resection or cTACE between August 2013 and December 2020. A CT-based predictive model for identifying proliferative HCCs was developed and externally validated in a cohort that underwent resection. Diagnostic performance was calculated for the model. Thereafter, patients in the cTACE cohort were stratified into groups with predicted proliferative or nonproliferative HCCs according to the model. The primary outcome was overall survival (OS), and the secondary outcomes were tumor response rate and progression-free survival (PFS). These were compared between the two groups with use of the χ2 test and the log-rank test. Results A total of 1194 patients (1021 men; mean age, 54 years ± 12 [SD]; median follow-up time, 29.1 months) were included. The predictive model, named the SMARS score, incorporated lobulated shape, mosaic architecture, α-fetoprotein levels, rim arterial phase hyperenhancement, and satellite lesions. The area under the receiver operating characteristic curve for the SMARS score was 0.83 for the training cohort and 0.80 for the validation cohort. According to the SMARS score, patients with predicted proliferative HCCs (n = 114) had lower tumor response rate (48% vs 71%; P < .001) and worse PFS (6.6 months vs 12.4 months; P < .001) and OS (14.4 months vs 38.7 months; P < .001) than those with nonproliferative HCCs (n = 263). Conclusion The predictive model demonstrated good performance for identifying proliferative HCCs. According to the SMARS score, patients with predicted proliferative HCCs have worse prognosis than those with predicted nonproliferative HCCs after cTACE. © RSNA, 2023 Supplemental material is available for this article.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Adulto , Masculino , Humanos , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Supervivencia sin Progresión , Tomografía Computarizada por Rayos X
20.
J Transl Med ; 21(1): 500, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491263

RESUMEN

BACKGROUND: Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY: Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION: OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.


Asunto(s)
Melanoma , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Melanoma/terapia , Neoplasias/terapia , Inmunoterapia , Terapia Combinada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA