Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.375
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 147(1): 223-34, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962518

RESUMEN

Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Bencilaminas/farmacología , Endopeptidasas/metabolismo , Quinazolinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Ratones , Proteasas Ubiquitina-Específicas , Ubiquitinación
2.
Nature ; 578(7795): 449-454, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051587

RESUMEN

The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system1,2. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown1,3. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.


Asunto(s)
Neuronas Adrenérgicas/patología , Transdiferenciación Celular , Reprogramación Celular , Neoplasias de la Boca/patología , Células Receptoras Sensoriales/patología , Proteína p53 Supresora de Tumor/deficiencia , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Animales , División Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Fibras Nerviosas/patología , Neuritas/patología , Receptores Adrenérgicos/metabolismo , Estudios Retrospectivos , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
PLoS Pathog ; 19(10): e1011753, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37883598

RESUMEN

Virus genome recoding is an attenuation method that confers genetically stable attenuation by rewriting a virus genome with numerous silent mutations. Prior flavivirus genome recoding attempts utilised codon deoptimisation approaches. However, these codon deoptimisation approaches act in a species dependent manner and were unable to confer flavivirus attenuation in mosquito cells or in mosquito animal models. To overcome these limitations, we performed flavivirus genome recoding using the contrary approach of codon optimisation. The genomes of flaviviruses such as dengue virus type 2 (DENV2) and Zika virus (ZIKV) contain functional RNA elements that regulate viral replication. We hypothesised that flavivirus genome recoding by codon optimisation would introduce silent mutations that disrupt these RNA elements, leading to decreased replication efficiency and attenuation. We chose DENV2 and ZIKV as representative flaviviruses and recoded them by codon optimising their genomes for human expression. Our study confirms that this recoding approach of codon optimisation does translate into reduced replication efficiency in mammalian, human, and mosquito cells as well as in vivo attenuation in both mice and mosquitoes. In silico modelling and RNA SHAPE analysis confirmed that DENV2 recoding resulted in the extensive disruption of genomic structural elements. Serial passaging of recoded DENV2 resulted in the emergence of rescue or adaptation mutations, but no reversion mutations. These rescue mutations were unable to rescue the delayed replication kinetics and in vivo attenuation of recoded DENV2, demonstrating that recoding confers genetically stable attenuation. Therefore, our recoding approach is a reliable attenuation method with potential applications for developing flavivirus vaccines.


Asunto(s)
Culicidae , Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Flavivirus/genética , Virus Zika/genética , Replicación Viral/genética , Codón , Mamíferos
4.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857313

RESUMEN

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

5.
Proteomics ; 24(12-13): e2300371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643379

RESUMEN

Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.


Asunto(s)
Estabilidad Proteica , Proteínas , Termodinámica , Proteínas/química , Proteínas/metabolismo , Biología Computacional/métodos , Bases de Datos de Proteínas , Algoritmos , Mutación , Humanos
6.
Proteomics ; : e2300302, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258387

RESUMEN

Small proteins (SPs) are a unique group of proteins that play crucial roles in many important biological processes. Exploring the biological function of SPs is necessary. In this study, the InterPro tool and the maximum correlation method were utilized to analyze functional domains of SPs. The purpose was to identify important functional domains that can indicate the essential differences between small and large protein sequences. First, the small and large proteins were represented by their functional domains via a one-hot scheme. Then, the MaxRel method was adopted to evaluate the relationships between each domain and the target variable, indicating small or large protein. The top 36 domain features were selected for further investigation. Among them, 14 were deemed to be highly related to SPs because they were annotated to SPs more frequently than large proteins. We found the involvement of functional domains, such as ubiquitin-conjugating enzyme/RWD-like, nuclear transport factor 2 domain, and alpha subunit of guanine nucleotide-binding protein (G-protein) in regulating the biological function of SPs. The involvement of these domains has been confirmed by other recent studies. Our findings indicate that protein functional domains may regulate small protein-related functions and predict their biological activity.

7.
Neurobiol Dis ; 192: 106426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331353

RESUMEN

The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.


Asunto(s)
Sistema Glinfático , Enfermedades Neurodegenerativas , Humanos , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Acuaporina 4 , Inflamación/metabolismo
8.
Br J Haematol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960381

RESUMEN

This prospective clinical study aimed to evaluate the efficacy and safety of the pre-emptive treatment modality of azacitidine in combination with interferon-α (IFN-α) in AML/MDS patients post-transplantation. Forty-seven patients aged 17-62 were enrolled with 14 patients having completed the planned 12 cycles. Following initiation, 72.3% responded positively after the first cycle, peaking at 77.2% by the fifth cycle. Notably, 24 patients maintained sustained responses throughout a median follow-up of 1050 days (range, 866-1234). Overall survival, leukaemia-free survival and event-free survival probabilities at 3 years were 69.5%, 60.4% and 35.7% respectively. Cumulative incidences of relapse and non-relapse mortality were 36.5% and 4.3% respectively. Multivariate analysis identified that receiving pre-emptive treatment for fewer than six cycles and the absence of chronic graft-versus-host disease after intervention was significantly associated with poorer clinical outcomes. The combination of azacitidine with IFN-α was well-tolerated with no observed severe myelotoxicity, and the majority of adverse events were reversible and manageable. In conclusion, the use of azacitidine in conjunction with IFN-α as pre-emptive therapy is a safe and effective treatment to prevent disease progression in AML/MDS patients with MRD positivity post-allo-HSCT.

9.
BMC Med ; 22(1): 56, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317226

RESUMEN

BACKGROUND: A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. METHODS: PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). RESULTS: In 20,887 screened references, 79 articles (82.5% in 2017-2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development (n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5-52,000, median 21) and large-span sample size (range 80-3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as "recommended"; however, 281 and 187 were "not recommended" and "warning," respectively. CONCLUSION: AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.


Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Algoritmos , África , Europa (Continente)
10.
Small ; : e2309891, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721972

RESUMEN

Although the current cancer photothermal therapy (PTT) can produce a powerful therapeutic effect, tumor cells have been proved a protective mechanism through autophagy. In this study, a novel hybrid theranostic nanoparticle (CaCO3@CQ@pDB NPs, CCD NPs) is designed and prepared by integrating a second near-infrared (NIR-II) absorbed conjugated polymer DTP-BBT (pDB), CaCO3, and autophagy inhibitor (chloroquine, CQ) into one nanosystem. The conjugated polymer pDB with asymmetric donor-acceptor structure shows strong NIR-II absorbing capacity, of which the optical properties and photothermal generation mechanism of pDB are systematically analyzed via molecular theoretical calculation. Under NIR-II laser irradiation, pDB-mediated PTT can produce powerful killing ability to tumor cells. At the same time, heat stimulates a large amount of Ca2+ inflow, causing calcium overload induced mitochondrial damage and enhancing the apoptosis of tumor cells. Besides, the released CQ blocks the self-protection mechanism of tumor cells and greatly enhances the attack of PTT and calcium overload therapy. Both in vitro and in vivo experiments confirm that CCD NPs possess excellent NIR-II theranostic capacity, which provides a new nanoplatform for anti-tumor therapy and builds great potential for future clinical research.

11.
Small ; 20(26): e2310248, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38234145

RESUMEN

Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.


Asunto(s)
Glucosa Oxidasa , Animales , Glucosa Oxidasa/metabolismo , Humanos , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Cloroquina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Autofagia/efectos de los fármacos , Nanopartículas/química
12.
Small ; : e2400919, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639010

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.

13.
J Pharmacol Exp Ther ; 388(1): 156-170, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918855

RESUMEN

Spleen tyrosine kinase (Syk) is an intracellular tyrosine kinase involved in the signal transduction in immune cells mainly. Its aberrant regulation is associated with diversified allergic disorders, autoimmune diseases and B cell malignancies. Therefore, inhibition of Syk is considered a reasonable approach to treat autoimmune/inflammatory diseases and B cell malignancies. Here we described the preclinical characterization of sovleplenib, a novel, highly potent and selective, oral Syk inhibitor, in several rodent autoimmune disease models. Sovleplenib potently inhibited Syk activity in a recombinant enzymatic assay and Syk-dependent cellular functions in various immune cell lines and human whole blood in vitro. Furthermore, sovleplenib, by oral administration, demonstrated strong in vivo efficacies in murine models of immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and chronic graft-versus-host disease (cGVHD), and a rat model of collagen induced arthritis (CIA) respectively, in a dose-dependent manner. Collectively, these results clearly supported sovleplenib as a therapeutic agent in the treatment of autoimmune diseases. Sovleplenib is being globally developed for ITP (Phase III, NCT05029635, Phase Ib/II, NCT03951623), wAIHA (Phase II/III, NCT05535933) and B-cell lymphoma (Phase I, NCT02857998, NCT03779113). SIGNIFICANCE STATEMENT: Syk is a key mediator of signaling pathways downstream of a wide array of receptors important for immune functions, including the B cell receptor, immunoglobulin receptors bearing Fc receptors. Inhibition of Syk could provide a novel therapeutic approach for autoimmune diseases and hematologic malignancies. The manuscript describes the preclinical pharmacology characterization of sovleplenib, a novel Syk inhibitor, in enzymatic and cellular assays in vitro and several murine autoimmune disease models in vivo.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Ratas , Ratones , Humanos , Animales , Proteínas Tirosina Quinasas , Quinasa Syk , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
14.
Am J Pathol ; 193(3): 286-295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509120

RESUMEN

Local aggressive growth of odontogenic keratocysts (OKCs) can cause serious bone destruction, even resulting in pathologic fractures of the mandible. The mechanism of osteoclastogenesis in OKCs was explored by investigating the role of programmed cell death ligand 1 (PD-L1), a key immune checkpoint, in OKCs and its relationship with the M2 isoform of pyruvate kinase (PKM2), a key enzyme of glycolysis. The data from immunohistochemistry, real-time quantitative PCR, Western blot, and flow cytometry indicated that the expression level of PD-L1 was significantly increased in the stroma and fibroblasts of OKCs (OKC-Fs) when compared with oral mucosa. Double-labeling staining demonstrated that osteoclasts in OKCs spatially interacted with PD-L1-positive OKC-Fs. Exogenous expression of PD-L1 in OKC-Fs promoted osteoclastogenesis when OKC-Fs were co-cultured with osteoclast precursors (RAW264.7 cells). Because OKC-Fs exhibit energy dependency and acquire energy from PKM2-mediated glycolysis, this study generated stable PKM2 knockdown OKC-Fs using shRNAs against PKM2, and found that PD-L1 expression level was decreased by PKM2 knockdown. Furthermore, Spearman rank correlation analysis showed that there was a positive correlation between the immunostaining of PKM2 and PD-L1 in OKC samples. In addition, double-labeling immunofluorescence showed colocalizations between PKM2 and PD-L1 in the fibrous tissue walls of OKCs. In conclusion, PD-L1 in fibroblasts promotes osteoclastogenesis in OKCs, which is regulated by PKM2.


Asunto(s)
Quistes Odontogénicos , Osteogénesis , Humanos , Apoptosis , Antígeno B7-H1 , Ligandos , Quistes Odontogénicos/patología , Células RAW 264.7 , Animales , Ratones
15.
Opt Lett ; 49(11): 3110-3113, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824340

RESUMEN

Autofocus is crucial for capturing sharp images with imaging devices for information acquisition. Traditional autofocus strategies based on post-processing become less efficient for passive FSPI microscopy of yet low temporal resolution. In this Letter, a fast and image-free autofocus system is proposed for passive FSPI microscopy. Based on the complementary design of an optical path, the system can measure the focus degree at 5000 fps while maintaining a high light efficiency for imaging. The proposed system can be easily combined with existing trinocular microscopes, which provides a welcomed boost to the practicability of passive FSPI microscopy.

16.
Cancer Cell Int ; 24(1): 225, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951894

RESUMEN

BACKGROUND: Despite the improved survival observed in PD-1/PD-L1 blockade therapy, a substantial proportion of cancer patients, including those with non-small cell lung cancer (NSCLC), still lack a response. METHODS: Transcriptomic profiling was conducted on a discovery cohort comprising 100 whole blood samples, as collected multiple times from 48 healthy controls (including 43 published data) and 31 NSCLC patients that under treatment with a combination of anti-PD-1 Tislelizumab and chemotherapy. Differentially expressed genes (DEGs), simulated immune cell subsets, and germline DNA mutational markers were identified from patients achieved a pathological complete response during the early treatment cycles. The predictive values of mutational markers were further validated in an independent immunotherapy cohort of 1661 subjects, and then confirmed in genetically matched lung cancer cell lines by a co-culturing model. RESULTS: The gene expression of hundreds of DEGs (FDR p < 0.05, fold change < -2 or > 2) distinguished responders from healthy controls, indicating the potential to stratify patients utilizing early on-treatment features from blood. PD-1-mediated cell abundance changes in memory CD4 + and regulatory T cell subset were more significant or exclusively observed in responders. A panel of top-ranked genetic alterations showed significant associations with improved survival (p < 0.05) and heightened responsiveness to anti-PD-1 treatment in patient cohort and co-cultured cell lines. CONCLUSION: This study discovered and validated peripheral blood-based biomarkers with evident predictive efficacy for early therapy response and patient stratification before treatment for neoadjuvant PD-1 blockade in NSCLC patients.

17.
Sex Transm Dis ; 51(6): 400-406, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38403298

RESUMEN

BACKGROUND: Rectal Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) infections among men who have sex with men (MSM) are escalating public health concerns. This study aimed to explore (1) the reliability of self-reported sexual positioning as an indicator for rectal CT and NG screening, and (2) factors associated with rectal CT and NG infections in Shenzhen, China. METHODS: A cross-sectional study was conducted in 2 settings in Shenzhen, China, from April 1, 2021, to March 31, 2022. Data on sociodemographic characteristics, sexual behaviors, and basic CT knowledge were collected. Urine and self-collected rectal swabs were collected for CT and NG testing. RESULTS: In total, 195 MSM participated in the study, and 5.1% tested positive for urogenital CT, 29.2% for rectal CT, 1.0% for urogenital NG, and 8.2% for rectal NG. Among those who reported exclusively insertive anal sex, 69.2% of CT infections and 85.7% of NG infections would have remained undetected with urine testing alone. Risk factors for rectal CT infection included engaging in both insertive and receptive anal sex, with a significant association found for coinfection with rectal NG. CONCLUSIONS: Self-reported sexual positioning was found to be an unreliable indicator for CT and NG screening, as a substantial proportion of infections would have remained undetected. The findings suggest that CT and NG screening in China should be offered to all MSM regardless of self-reported sexual positioning, and that the dual CT/NG testing is recommended.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Gonorrea , Homosexualidad Masculina , Neisseria gonorrhoeae , Autoinforme , Conducta Sexual , Humanos , Masculino , Gonorrea/diagnóstico , Gonorrea/epidemiología , Infecciones por Chlamydia/diagnóstico , Infecciones por Chlamydia/epidemiología , China/epidemiología , Estudios Transversales , Adulto , Neisseria gonorrhoeae/aislamiento & purificación , Chlamydia trachomatis/aislamiento & purificación , Tamizaje Masivo , Recto/microbiología , Adulto Joven , Factores de Riesgo , Enfermedades del Recto/microbiología , Enfermedades del Recto/diagnóstico , Enfermedades del Recto/epidemiología , Minorías Sexuales y de Género , Persona de Mediana Edad , Reproducibilidad de los Resultados
18.
J Nutr ; 154(1): 79-86, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951389

RESUMEN

BACKGROUND: Numerous research works have investigated the association between tea consumption and the risk of acute cerebrovascular events; however, the results are inconsistent. OBJECTIVES: We used Mendelian randomization (MR) to evaluate the causal association between tea intake and several acute cerebrovascular events, including any ischemic stroke, large atherosclerotic stroke (LAS), cardiogenic embolic stroke (CES), small vessel stroke (SVS), intracranial hemorrhage (ICH), and subarachnoid hemorrhage (SAH). METHODS: We obtained summary genome-wide association study (GWAS) data on tea intake and acute cerebrovascular events in populations of European ancestry. The GWAS on tea intake is derived from the UK Biobank, where we have chosen single-nucleotide polymorphisms (SNPs) closely associated with it as instrumental variables. We also obtained summary data on ischemic stroke from a GWAS meta-analysis, as well as summary data on ICH and SAH from the FinnGen study. We first explored the causal association between tea intake and several acute cerebrovascular events using univariate Mendelian randomization (UVMR), and then further assessed the causal association between tea intake and SVS using multivariate Mendelian randomization (MVMR) corrected for multiple confounders. RESULTS: In UVMR, genetically predicted increases in tea intake were linked to a lower risk of SVS (OR: 0.58; 95% CI: 0.39, 0.86). There was no causal association between tea intake and the risk of other acute cerebrovascular events. In the MVMR, our results show that there was still a significant causal association between drinking tea and SVS, after adjusting body mass index, total cholesterol, low-density lipoprotein cholesterol, diabetes, hypertension, smoking, and alcohol consumption. CONCLUSION: This MR study provides new genetic evidence that increased tea intake reduces the risk of SVS in the European population. However, possibly because of limited statistical power, the study did not find that tea consumption reduced the risk of several other acute cerebrovascular events.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Estudio de Asociación del Genoma Completo , Accidente Cerebrovascular/genética , LDL-Colesterol , Polimorfismo de Nucleótido Simple , , Análisis de la Aleatorización Mendeliana , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
BMC Cancer ; 24(1): 123, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267913

RESUMEN

BACKGROUND: Brain metastasis is a common outcome in non-small cell lung cancer, and despite aggressive treatment, its clinical outcome is still frustrating. In recent years, immunotherapy has been developing rapidly, however, its therapeutic outcomes for primary lung cancer and brain metastases are not the same, suggesting that there may be differences in the immune microenvironment of primary lung cancer and brain metastases, however, we currently know little about these differences. METHODS: Seventeen paired samples of NSCLC and their brain metastases and 45 other unpaired brain metastases samples were collected for the current study. Immunohistochemical staining was performed on all samples for the following markers: immune checkpoints CTLA-4, PD-1, PD-L1, B7-H3, B7-H4, IDO1, and EphA2; tumor-infiltrating lymphocytes (TILs) CD3, CD4, CD8, and CD20; tumor-associated microglia/macrophages (TAMs) CD68 and CD163; and tumor proliferation index Ki-67. The differences in expression of these markers were compared in 17 paired samples, and the effect of the expression level of these markers on the prognosis of patients was analyzed in lung adenocarcinoma brain metastases samples. Subsequently, multiplex immunofluorescence staining was performed in a typical lung-brain paired sample based on the aforementioned results. The multiplex immunofluorescence staining results revealed the difference in tumor immune microenvironment between primary NSCLC and brain metastases. RESULTS: In 17 paired lesions, the infiltration of CTLA-4+ (P = 0.461), PD-1+ (P = 0.106), CD3+ (P = 0.045), CD4+ (P = 0.037), CD8+ (P = 0.008), and CD20+ (P = 0.029) TILs in brain metastases were significantly decreased compared with primary tumors. No statistically significant difference was observed in the CD68 (P = 0.954) and CD163 (P = 0.654) TAM infiltration between primary NSCLC and paired brain metastases. In all the brain metastases lesions, the expression of PD-L1 is related to the time interval of brain metastases in NSCLC. In addition, the Cox proportional hazards regression models showed high expression of B7-H4 (hazard ratio [HR] = 3.276, 95% confidence interval [CI] 1.335-8.041, P = 0.010) and CD68 TAM infiltration (HR = 3.775, 95% CI 1.419-10.044, P = 0.008) were independent prognosis factors for lung adenocarcinoma brain metastases patients. CONCLUSIONS: Both temporal and spatial heterogeneity is present between the primary tumor and brain metastases of NCSLC. Brain metastases lesions exhibit a more immunosuppressive tumor immune microenvironment. B7-H4 and CD68+ TAMs may have potential therapeutic value for lung adenocarcinoma brain metastases patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Antígeno CTLA-4 , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
20.
Anal Biochem ; 690: 115509, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38508332

RESUMEN

DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA