Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 231(5): 2077-2091, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076889

RESUMEN

Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.


Asunto(s)
Sistemas CRISPR-Cas , Phaeophyceae , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Eucariontes , Técnicas de Inactivación de Genes , Phaeophyceae/genética
2.
Sci Rep ; 10(1): 3581, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32108170

RESUMEN

Understanding how animals respond to injury and how wounds heal remains a challenge. These questions can be addressed using genetically tractable animals, including the nematode Caenorhabditis elegans. Given its small size, the current methods for inflicting wounds in a controlled manner are demanding. To facilitate and accelerate the procedure, we fabricated regular arrays of pyramidal features ("pins") sharp enough to pierce the tough nematode cuticle. The pyramids were made from monocrystalline silicon wafers that were micro-structured using optical lithography and alkaline wet etching. The fabrication protocol and the geometry of the pins, determined by electron microscopy, are described in detail. We also used electron microscopy to characterize the different types of injury caused by these pins. Upon wounding, C. elegans expresses genes encoding antimicrobial peptides. A comparison of the induction of antimicrobial peptide gene expression using traditional needles and the pin arrays demonstrates the utility of this new method.


Asunto(s)
Caenorhabditis elegans/fisiología , Silicio/química , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopía Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA