Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 149(3): 1475, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33765815

RESUMEN

Progress in instrumentation, computer hardware, and inversion methods is encouraging the development of more advanced guided wave tomography techniques, especially for nondestructive testing of plate structures to characterize corrosion. An experimental S0 tomography performance assessment in the membrane regime is reported. One of the main interests of the fundamental membrane regime is that in this regime, waves are propagated over long distances. A 2 mm thick steel disk containing calibrated sharp artificial defects (flat bottom holes) is tested in both reflection and extinction modes. A reconstruction algorithm derived from the membrane approximation is presented. We expose a complete reflection mode inversion approach that includes beam inversion, waveform deconvolution, and thickness loss calibration. Non-linear correction factors are introduced and discussed for quantitative imaging. A width-regularity-depth description of defects is introduced to put the results into perspective with other defect geometries. The results show the relevance of the inversion method to enhance the imaging performance with regard to defect localization and sizing. Crucial points concerning instrumentation such as coupling, signal-to-noise ratio, excitation mode, coupling, selection of frequency, are also discussed.

2.
Ultrason Sonochem ; 93: 106300, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36696780

RESUMEN

In this work, we characterize acoustic resonance phenomena occurring between gas bubbles in a segmented gas-liquid flow in a microchannel irradiated with a frequency around 500 kHz. A large acoustic amplitude can be reached, leading to gas-liquid interface deformation, atomization of micrometer sized droplets, and cavitation. A numerical approach combining an acoustic frequency-domain solver and a Lagrangian Surface-Evolver solver is introduced to predict the acoustic deformation of gas-liquid interfaces and the dynamic acoustic magnitude. The numerical approach and its assumptions were validated with experiments, for which a good agreement was observed. Therefore, this numerical approach allows to provide a description and an understanding of the acoustic nature of these phenomena. The acoustic pressure magnitude can reach hundreds of kPa to tens of MPa, and these values are consistent with the observation of atomization and cavitation in the experiments. Furthermore, volume of fluid simulations were performed to predict the atomization threshold, which was then related to acoustic resonance. It is found that dynamic acoustic resonance gives rise to atomization bursts at the gas bubble surface. The presented approach can be applied to more complex acoustic fields involving more complex channel geometries, vibration patterns, or two-phase flow patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA