Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 27(36): 364003, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27483428

RESUMEN

Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.

2.
Phys Rev Lett ; 109(19): 190402, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23215364

RESUMEN

We use the classical correlation between a quantum system being measured and its measurement apparatus to analyze the amount of information being retrieved in a quantum measurement process. Accounting for decoherence of the apparatus, we show that these correlations may have a sudden transition from a decay regime to a constant level. This transition characterizes a nonasymptotic emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence. This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an experiment with polarization entangled photon pairs.

3.
Phys Rev E ; 102(3-1): 032102, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075883

RESUMEN

In this paper we analyze the entropy and entropy production of a nonisolated quantum system described within the quantum Brownian motion framework. This is a very general and paradigmatic framework for describing nonisolated quantum systems and can be used in any kind of coupling regime. We start by considering the application of von Neumann entropy to an arbitrarily damped quantum system making use of its reduced density operator. We argue that this application is formally valid and develop a path-integral method to evaluate that quantity analytically. We apply this technique to a harmonic oscillator in contact with a heat bath and obtain an exact form for its entropy. Then we study the entropy production of this system and enlighten important characteristics of its thermodynamical behavior on the pure quantum realm and also address their transition to the classical limit.

4.
Phys Rev E ; 94(6-1): 062147, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085293

RESUMEN

Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.

5.
Phys Rev Lett ; 97(25): 250601, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17280338

RESUMEN

We use the system-plus-reservoir approach to study the dynamics of a system composed of two independent Brownian particles. We present an extension of the well-known model of a bath of oscillators which is capable of inducing an effective coupling between the two particles depending on the choice made for the spectral function of the bath oscillators. The coupling is nonlinear in the variables of interest, and an exponential dependence on these variables is imposed in order to guarantee the translational invariance of the model if the two particles are not subject to any external potential. The effective equations of motion for the particles are obtained by the Laplace transform method, and, besides recovering all the local dynamical properties for each particle, we end up with an effective interaction potential between them. We explicitly analyze one of its possible forms.

6.
Phys Rev Lett ; 97(18): 186401, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-17155561

RESUMEN

We develop a nonperturbative bosonization approach for bilayer quantum Hall systems at nu(T)=1, which allows us to systematically study the existence of an exciton condensate in these systems. An effective boson model is derived and the excitation spectrum is calculated in both the Bogoliubov and the Popov approximations. In the latter case, we show that the ground state of the system is an exciton condensate only when the distance between the layers is very small compared to the magnetic length, indicating that the system possibly undergoes another phase transition before the incompressible-compressible one. The effect of a finite electron interlayer tunneling is included and a quantitative phase diagram is proposed.

7.
Phys Rev Lett ; 91(22): 226803, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-14683263

RESUMEN

Gapless magnons in a plane ferromagnet with normal axis anisotropy are shown to exist besides the usual gapped modes that affect spin dependent transport properties only above a finite temperature. These magnons are one-dimensional objects, in the sense that they are localized inside the domain walls that form in the film. They may play an essential role in the spin dependent scattering processes even down to very low temperatures.

8.
Phys Rev Lett ; 92(13): 137202, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-15089641

RESUMEN

We propose that the dissipative dynamics of topological defects in a spiral state is responsible for the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method, we show that topological defects are coupled to a bath of magnetic excitations. By integrating out the bath degrees of freedom, we find that the dynamical properties of the topological defects are dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an anisotropy and linear temperature dependence in agreement with experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA