Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 595(6): 1903-1916, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27381164

RESUMEN

Astrocytes comprise half of the cells in the brain. Although astrocytes have traditionally been described as playing a supportive role for neurons, they have recently been recognized as active participants in the development and plasticity of dendritic spines and synapses. Astrocytes can eliminate dendritic spines, induce synapse formation, and regulate neurotransmission and plasticity. Dendritic spine and synapse impairments are features of many neurological disorders, including autism spectrum disorder, schizophrenia, and Alzheimer's disease. In this review we will present evidence from multiple neurological disorders demonstrating that changes in astrocyte-synapse interaction contribute to the pathologies. Genomic analysis has connected altered astrocytic gene expression with synaptic deficits in a number of neurological disorders. Alterations in astrocyte-secreted factors have been implicated in the neuronal morphology and synaptic changes seen in neurodevelopmental disorders, while alteration in astrocytic glutamate uptake is a core feature of multiple neurodegenerative disorders. This evidence clearly demonstrates that maintaining astrocyte-synapse interaction is crucial for normal central nervous system functioning. Obtaining a better understanding of the role of astrocytes at synapses in health and disease will provide a new avenue for future therapeutic targeting.


Asunto(s)
Astrocitos/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Sinapsis/fisiología , Animales , Espinas Dendríticas/fisiología , Humanos
2.
Nat Neurosci ; 25(9): 1163-1178, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36042312

RESUMEN

Astrocytes negatively impact neuronal development in many models of neurodevelopmental disorders (NDs); however, how they do this, and if mechanisms are shared across disorders, is not known. In this study, we developed a cell culture system to ask how astrocyte protein secretion and gene expression change in three mouse models of genetic NDs (Rett, Fragile X and Down syndromes). ND astrocytes increase release of Igfbp2, a secreted inhibitor of insulin-like growth factor (IGF). IGF rescues neuronal deficits in many NDs, and we found that blocking Igfbp2 partially rescues inhibitory effects of Rett syndrome astrocytes, suggesting that increased astrocyte Igfbp2 contributes to decreased IGF signaling in NDs. We identified that increased BMP signaling is upstream of protein secretion changes, including Igfbp2, and blocking BMP signaling in Fragile X and Rett syndrome astrocytes reverses inhibitory effects on neurite outgrowth. This work provides a resource of astrocyte-secreted proteins in health and ND models and identifies novel targets for intervention in diverse NDs.


Asunto(s)
Trastornos del Neurodesarrollo , Síndrome de Rett , Animales , Astrocitos/metabolismo , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neurogénesis , Neuronas/metabolismo , Síndrome de Rett/metabolismo
3.
PLoS One ; 12(9): e0185236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28937996

RESUMEN

Overexpression or pharmacological activation of SIRT1 has been shown to extend the lifespan of mice and protect against aging-related diseases. Here we show that pharmacological activation of SIRT1 protects in two models of osteoporosis. Ovariectomized female mice and aged male mice, models for post-menopausal and aging-related osteoporosis, respectively, show significant improvements in bone mass upon treatment with SIRT1 agonist, SRT1720. Further, we find that calorie restriction (CR) results in a two-fold upregulation of sirt1 mRNA expression in bone tissue that is associated with increased bone mass in CR mice. Reciprocally, SIRT1 whole-body knockout (KO) mice, as well as osteoblast and osteoclast specific KOs, show a low bone mass phenotype; though double knockout mice (containing SIRT1 deleted in both osteoblasts and osteoclasts) do not show a more severe phenotype. Altogether, these findings provide strong evidence that SIRT1 is a positive regulator of bone mass and a promising target for the development of novel therapeutics for osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Densidad Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Osteoporosis/tratamiento farmacológico , Sirtuina 1/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Densidad Ósea/fisiología , Huesos/diagnóstico por imagen , Huesos/metabolismo , Restricción Calórica , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoporosis/diagnóstico por imagen , Osteoporosis/metabolismo , Ovariectomía , Fenotipo , ARN Mensajero/metabolismo , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA