Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(10): 1316-1326, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34531562

RESUMEN

Environmental allergens, including fungi, insects and mites, trigger type 2 immunity; however, the innate sensing mechanisms and initial signaling events remain unclear. Herein, we demonstrate that allergens trigger RIPK1-caspase 8 ripoptosome activation in epithelial cells. The active caspase 8 subsequently engages caspases 3 and 7, which directly mediate intracellular maturation and release of IL-33, a pro-atopy, innate immunity, alarmin cytokine. Mature IL-33 maintained functional interaction with the cognate ST2 receptor and elicited potent pro-atopy inflammatory activity in vitro and in vivo. Inhibiting caspase 8 pharmacologically and deleting murine Il33 and Casp8 each attenuated allergic inflammation in vivo. Clinical data substantiated ripoptosome activation and IL-33 maturation as likely contributors to human allergic inflammation. Our findings reveal an epithelial barrier, allergen-sensing mechanism that converges on the ripoptosome as an intracellular molecular signaling platform, triggering type 2 innate immune responses. These findings have significant implications for understanding and treating human allergic diseases.


Asunto(s)
Alérgenos/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Adolescente , Animales , Caspasa 8/inmunología , Línea Celular , Línea Celular Tumoral , Niño , Preescolar , Citocinas/inmunología , Células Epiteliales/inmunología , Femenino , Células HEK293 , Humanos , Hipersensibilidad/inmunología , Interleucina-33/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
2.
N Engl J Med ; 390(24): 2252-2263, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38924732

RESUMEN

BACKGROUND: Benralizumab is an eosinophil-depleting anti-interleukin-5 receptor α monoclonal antibody. The efficacy and safety of benralizumab in patients with eosinophilic esophagitis are unclear. METHODS: In a phase 3, multicenter, double-blind, randomized, placebo-controlled trial, we assigned patients 12 to 65 years of age with symptomatic and histologically active eosinophilic esophagitis in a 1:1 ratio to receive subcutaneous benralizumab (30 mg) or placebo every 4 weeks. The two primary efficacy end points were histologic response (≤6 eosinophils per high-power field) and the change from baseline in the score on the Dysphagia Symptom Questionnaire (DSQ; range, 0 to 84, with higher scores indicating more frequent or severe dysphagia) at week 24. RESULTS: A total of 211 patients underwent randomization: 104 were assigned to receive benralizumab, and 107 were assigned to receive placebo. At week 24, more patients had a histologic response with benralizumab than with placebo (87.4% vs. 6.5%; difference, 80.8 percentage points; 95% confidence interval [CI], 72.9 to 88.8; P<0.001). However, the change from baseline in the DSQ score did not differ significantly between the two groups (difference in least-squares means, 3.0 points; 95% CI, -1.4 to 7.4; P = 0.18). There was no substantial between-group difference in the change from baseline in the Eosinophilic Esophagitis Endoscopic Reference Score, which reflects endoscopic abnormalities. Adverse events were reported in 64.1% of the patients in the benralizumab group and in 61.7% of those in the placebo group. No patients discontinued the trial because of adverse events. CONCLUSIONS: In this trial involving patients 12 to 65 years of age with eosinophilic esophagitis, a histologic response (≤6 eosinophils per high-power field) occurred in significantly more patients in the benralizumab group than in the placebo group. However, treatment with benralizumab did not result in fewer or less severe dysphagia symptoms than placebo. (Funded by AstraZeneca; MESSINA ClinicalTrials.gov number, NCT04543409.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Esofagitis Eosinofílica , Eosinófilos , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Trastornos de Deglución/etiología , Trastornos de Deglución/tratamiento farmacológico , Método Doble Ciego , Esofagitis Eosinofílica/tratamiento farmacológico , Esofagitis Eosinofílica/inmunología , Subunidad alfa del Receptor de Interleucina-5/antagonistas & inhibidores , Recuento de Leucocitos
3.
J Allergy Clin Immunol ; 153(5): 1381-1391.e6, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395083

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is diagnosed and monitored using esophageal eosinophil levels; however, EoE also exhibits a marked, understudied esophageal mastocytosis. OBJECTIVES: Using machine learning, we localized and characterized esophageal mast cells (MCs) to decipher their potential role in disease pathology. METHODS: Esophageal biopsy samples (EoE, control) were stained for MCs by anti-tryptase and imaged using immunofluorescence; high-resolution whole tissue images were digitally assembled. Machine learning software was trained to identify, enumerate, and characterize MCs, designated Mast Cell-Artificial Intelligence (MC-AI). RESULTS: MC-AI enumerated cell counts with high accuracy. During active EoE, epithelial MCs increased and lamina propria (LP) MCs decreased. In controls and EoE remission patients, papillae had the highest MC density and negatively correlated with epithelial MC density. MC density in the epithelium and papillae correlated with the degree of epithelial eosinophilic inflammation, basal zone hyperplasia, and LP fibrosis. MC-AI detected greater MC degranulation in the epithelium, papillae, and LP in patients with EoE compared with control individuals. MCs were localized further from the basement membrane in active EoE than EoE remission and control individuals but were closer than eosinophils to the basement membrane in active EoE. CONCLUSIONS: Using MC-AI, we identified a distinct population of homeostatic esophageal papillae MCs; during active EoE, this population decreases, undergoes degranulation, negatively correlates with epithelial MC levels, and significantly correlates with distinct histologic features. Overall, MC-AI provides a means to understand the potential involvement of MCs in EoE and other disorders.


Asunto(s)
Esofagitis Eosinofílica , Esófago , Aprendizaje Automático , Mastocitos , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/inmunología , Humanos , Mastocitos/inmunología , Mastocitos/patología , Masculino , Femenino , Esófago/patología , Esófago/inmunología , Adulto , Adolescente , Persona de Mediana Edad , Eosinófilos/patología , Eosinófilos/inmunología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38871184

RESUMEN

BACKGROUND: Eosinophils are elusive cells involved in allergic inflammation. Single-cell RNA Sequencing (scRNA-seq) is an emerging approach to deeply characterize cellular properties, heterogeneity, and functionality. OBJECTIVE: To comprehensively characterize the transcriptome and biological functions of human eosinophils at a site of severe allergic inflammation in the esophagus (i.e., eosinophilic esophagitis (EoE)). METHODS: We employed a gravity-based scRNA-seq methodology to sequence blood eosinophils from patients with EoE and control individuals compared to a reanalyzed public scRNA-seq dataset of human esophageal eosinophils of EoE patients. We used flow cytometry, immunostaining, and a stimulation assay to verify mRNA findings. RESULTS: In total, scRNA-seq was obtained from 586 eosinophils (188 from blood [n=6 individuals] and 398 from esophagus [n=6 individuals]). The esophageal eosinophils were composed of a population of activated eosinophils (enriched in 659 genes compared with peripheral blood-associated eosinophils) and a small population of eosinophils resembling peripheral blood eosinophils (enriched in 62 genes compared with esophageal eosinophils). Esophageal eosinophils expressed genes involved in sensing and responding to diverse stimuli, most notably interferon-, interleukin 10, histamine and leukotrienes, and succinate. Esophageal eosinophils were most distinguished from other esophageal populations by gene expression of the receptors CCR3, HRH4, SUCNR1, and VSTM1; transcription factors CEBPE, OLIG1, and OLIG2; protease PRSS33; and hallmark eosinophil gene CLC. A web of bidirectional eosinophil interactions with other esophageal populations was derived. Comparing esophageal eosinophils and mast cells revealed that esophageal eosinophils expressed genes involved in DAP12 interactions, IgG receptor-triggered events, immunoregulation, and IL-10 signaling. CONCLUSIONS: In EoE, esophageal eosinophils exist as two populations, a minority population resembling blood eosinophils and the other population characterized by high de novo transcription of diverse sensing receptors and inflammatory mediators readying them to potentially intersect with diverse cell types.

5.
J Allergy Clin Immunol ; 151(4): 1027-1039, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36592704

RESUMEN

BACKGROUND: Eosinophilic duodenitis (EoD), characterized by nonspecific gastrointestinal symptoms and increased numbers of duodenal eosinophils, may be in the eosinophilic gastrointestinal disease spectrum. However, diagnostic thresholds and pathogenic processes of duodenal tissue eosinophilia are inadequately characterized. OBJECTIVE: We aimed to define an EoD transcriptome and pathologic pathways. METHODS: RNA sequencing and histologic features of human duodenal biopsy samples were analyzed as a function of duodenal eosinophils levels. For analyses, we defined EoD as more than 52 peak eosinophils/hpf (n = 8), duodenal eosinophilia as 30 to 52 eosinophils/hpf (n = 11), and normal controls as fewer than 30 eosinophils/hpf (n = 8). Associations between gene expression and histologic features were analyzed with Spearman correlation. RESULTS: We identified 382 differentially expressed genes (EoD transcriptome) between EoD and normal controls (>2-fold change [adjusted P < .05]). The EoD transcriptome distinguished EoD from controls (duodenal eosinophilia and normal controls). The duodenal eosinophil count was correlated with a distinct EoD transcriptome when 50 to 60 peak eosinophils/hpf were present. The EoD transcriptome was enriched in genes involved in IL-4/IL-13 signaling, mast cells, and myeloid progenitor cells. Among duodenal histologic features, lamina propria eosinophil sheets was the most associated with transcriptomic changes (r = 0.66; P < .01). EoD gene signatures were shared with eosinophilic esophagitis and eosinophilic gastritis but not with eosinophilic colitis or celiac disease. CONCLUSION: We have identified an EoD transcriptomic signature that emerges at 50 to 60 peak eosinophils/hpf and established EoD as part of a spectrum of upper eosinophilic gastrointestinal disorder associated with type 2 immunity and distinct from eosinophilic colitis and celiac disease. These findings provide a basis for improving diagnosis and treatment.


Asunto(s)
Enfermedad Celíaca , Colitis , Esofagitis Eosinofílica , Humanos , Eosinófilos , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Colitis/patología
6.
J Allergy Clin Immunol ; 152(1): 136-144, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754294

RESUMEN

BACKGROUND: Eosinophilic gastritis (EoG) associates with type 2 immunity. However, the type 2 cytokine cellular source, gastric T-cell composition, and gastric T-cell relationship (or relationships) with disease pathology remain understudied. OBJECTIVE: We defined gastric T-cell populations and their association with histologic and endoscopic EoG pathology. METHODS: Gastric biopsy samples (n = 6 EoG, n = 7 control) were subjected to histologic, endoscopic, and flow cytometry analyses. In a complementary cohort (n = 83 EoG), IL4, IL5, and IL13 mRNA levels were correlated with EoG pathologic parameters. RESULTS: Gastric biopsy samples contained CD3+ T cells that were mainly CD8+; the CD8/CD4 ratio was comparable in EoG and control biopsy samples (5.7 ± 3.0 and 4.3 ± 0.6, respectively; P = .28). Gastric regulatory T (CD3+CD4+FOXP3+) and TH2 (CD3+CD4+GATA3+) cell levels were increased in EoG versus controls (2-fold, P < .05 and 10-fold, P < .001, respectively) and correlated with gastric eosinophil levels (r = 0.63, P < .05 and r = 0.85, P < .001, respectively), endoscopic pathology (r = 0.56, P < .01; r = 0.84, P < .001, respectively), and histopathology (r = 0.72, P < .01; r = 0.82, P < .01, respectively). Cytokine-positive, most notably IL-4+, TH2 cell levels strongly correlated with histologic and endoscopic scores (r = 0.82, P < .0001 and r = 0.78, P < .0001, respectively). In an independent EoG cohort (n = 83), bulk gastric IL4, IL5, and IL13 mRNA levels correlated with histologic score (r = 0.22, P < .005; r = 0.54, P < .0001; and r = 0.36, P < .0001, respectively) and endoscopic score (r = 0.27, P < .001; r = 0.40, P < .0001; and r = 0.35, P < .0001, respectively). CONCLUSIONS: EoG is a TH2 cell-associated disease featuring increased gastric type 2 cytokine-producing CD3+CD4+GATA3+TH2 cells that strongly correlate with disease pathologies.


Asunto(s)
Interleucina-13 , Interleucina-4 , Humanos , Interleucina-5 , Citocinas , ARN Mensajero
7.
Gut ; 72(5): 834-845, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35918104

RESUMEN

OBJECTIVE: The contribution of vitamin D (VD) deficiency to the pathogenesis of allergic diseases remains elusive. We aimed to define the impact of VD on oesophageal allergic inflammation. DESIGN: We assessed the genomic distribution and function of VD receptor (VDR) and STAT6 using histology, molecular imaging, motif discovery and metagenomic analysis. We examined the role of VD supplementation in oesophageal epithelial cells, in a preclinical model of IL-13-induced oesophageal allergic inflammation and in human subjects with eosinophilic oesophagitis (EoE). RESULTS: VDR response elements were enriched in oesophageal epithelium, suggesting enhanced VDR binding to functional gene enhancer and promoter regions. Metagenomic analysis showed that VD supplementation reversed dysregulation of up to 70% of the transcriptome and epigenetic modifications (H3K27Ac) induced by IL-13 in VD-deficient cells, including genes encoding the transcription factors HIF1A and SMAD3, endopeptidases (SERPINB3) and epithelial-mesenchymal transition mediators (TGFBR1, TIAM1, SRC, ROBO1, CDH1). Molecular imaging and chromatin immunoprecipitation showed VDR and STAT6 colocalisation within the regulatory regions of the affected genes, suggesting that VDR and STAT6 interactome governs epithelial tissue responses to IL-13 signalling. Indeed, VD supplementation reversed IL-13-induced epithelial hyperproliferation, reduced dilated intercellular spaces and barrier permeability, and improved differentiation marker expression (filaggrin, involucrin). In a preclinical model of IL-13-mediated oesophageal allergic inflammation and in human EoE, VD levels inversely associated with severity of oesophageal eosinophilia and epithelial histopathology. CONCLUSIONS: Collectively, these findings identify VD as a natural IL-13 antagonist with capacity to regulate the oesophageal epithelial barrier functions, providing a novel therapeutic entry point for type 2 immunity-related diseases.


Asunto(s)
Esofagitis Eosinofílica , Receptores de Calcitriol , Humanos , Inflamación/metabolismo , Interleucina-13/farmacología , Interleucina-13/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Calcitriol/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Vitamina D
8.
Gastroenterology ; 162(2): 439-453, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687736

RESUMEN

BACKGROUND & AIMS: Eosinophilic esophagitis (EoE) can progress to fibrostenosis by unclear mechanisms. Herein, we investigated gene dysregulation in fibrostenotic EoE, its association with clinical parameters and specific pathways, and the functional consequences. METHODS: Esophageal biopsies from subjects with EoE were collected across 11 Consortium of Eosinophilic Gastrointestinal Disease Researchers sites (n = 311) and 2 independent replication cohorts (n = 83). Inclusion criteria for fibrostenotic EoE were endoscopic rings, stricture, and/or a history of dilation. Endoscopic, histologic, and molecular features were assessed by the EoE Endoscopic Reference Score, EoE Histology Scoring System, EoE Diagnostic Panel, and RNA sequencing. Esophageal endothelial TSPAN12 expression and functional effects on barrier integrity and gene expression were analyzed in vitro. RESULTS: TSPAN12 was the gene most correlated with fibrostenosis (r = -0.40, P < .001). TSPAN12 was lower in fibrostenotic EoE and correlated with EoE Endoscopic Reference Score, EoE Diagnostic Panel, and EoE Histology Scoring System (r = 0.34-0.47, P < .001). Lower TSPAN12 associated with smaller esophageal diameter (r = 0.44, P = .03), increased lamina propria fibrosis (r = -0.41, P < .001), and genes enriched in cell cycle-related pathways. Interleukin (IL)-13 reduced TSPAN12 expression in endothelial cells. Conversely, anti-IL-13 therapy increased TSPAN12 expression. TSPAN12 gene silencing increased endothelial cell permeability and dysregulated genes associated with extracellular matrix pathways. Endothelial cell-fibroblast crosstalk induced extracellular matrix changes relevant to esophageal remodeling. CONCLUSIONS: Patients with fibrostenotic EoE express decreased levels of endothelial TSPAN12. We propose that IL-13 decreases TSPAN12, likely contributing to the chronicity of EoE by promoting tissue remodeling through fibroblast-endothelial cell crosstalk.


Asunto(s)
Células Endoteliales/metabolismo , Esofagitis Eosinofílica/genética , Estenosis Esofágica/genética , Esófago/irrigación sanguínea , Fibroblastos/metabolismo , Interleucina-13/metabolismo , Tetraspaninas/genética , Adolescente , Adulto , Niño , Preescolar , Esofagitis Eosinofílica/complicaciones , Esofagitis Eosinofílica/patología , Estenosis Esofágica/etiología , Estenosis Esofágica/patología , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño , Tetraspaninas/metabolismo , Adulto Joven
9.
Gastroenterology ; 162(6): 1635-1649, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35085569

RESUMEN

BACKGROUND & AIMS: Colonic eosinophilia, an enigmatic finding often referred to as eosinophilic colitis (EoC), is a poorly understood condition. Whether EoC is a distinct disease or a colonic manifestation of eosinophilic gastrointestinal diseases (EGIDs) or inflammatory bowel disease (IBD) is undetermined. METHODS: Subjects with EoC (n = 27) and controls (normal [NL, n = 20], Crohn's disease [CD, n = 14]) were enrolled across sites associated with the Consortium of Eosinophilic Gastrointestinal Disease Researchers. EoC was diagnosed as colonic eosinophilia (ascending ≥100, descending ≥85, sigmoid ≥65 eosinophils/high-power field) with related symptoms. Colon biopsies were subjected to RNA sequencing. Associations between gene expression and histologic features were analyzed with Spearman correlation; operational pathways and cellular constituents were computationally derived. RESULTS: We identified 987 differentially expressed genes (EoC transcriptome) between EoC and NL (>1.5-fold change, P < .05). Colonic eosinophil count correlated with 31% of EoC transcriptome, most notably with CCL11 and CLC (r = 0.78 and 0.77, P < .0001). Among EoC and other EGIDs, there was minimal transcriptomic overlap and minimal evidence of a strong allergic type 2 immune response in EoC compared with other EGIDs. Decreased cell cycle and increased apoptosis in EoC compared with NL were identified by functional enrichment analysis and immunostaining using Ki-67 and cleaved caspase-3. Pericryptal circumferential eosinophil collars were associated with the EoC transcriptome (P < .001). EoC transcriptome-based scores were reversible with disease remission and differentiated EoC from IBD, even after controlling for colonic eosinophil levels (P < .0001). CONCLUSIONS: We established EoC transcriptomic profiles, identified mechanistic pathways, and integrated findings with parallel IBD and EGID data. These findings establish EoC as a distinct disease compared with other EGIDs and IBD, thereby providing a basis for improving diagnosis and treatment.


Asunto(s)
Colitis Microscópica , Eosinofilia , Enfermedades Inflamatorias del Intestino , Enteritis , Eosinofilia/diagnóstico , Eosinofilia/genética , Gastritis , Humanos
10.
J Allergy Clin Immunol ; 149(6): 2062-2077, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304158

RESUMEN

BACKGROUND: Mast cells (MCs) are pleiotropic cells that accumulate in the esophagus of patients with eosinophilic esophagitis (EoE) and are thought to contribute to disease pathogenesis, yet their properties and functions in this organ are largely unknown. OBJECTIVES: This study aimed to perform a comprehensive molecular and spatial characterization of esophageal MCs in EoE. METHODS: Esophageal biopsies obtained from patients with active EoE, patients with EoE in histologic remission, and individuals with histologically normal esophageal biopsies and no history of esophageal disease (ie, control individuals) were subject to single-cell RNA sequencing, flow cytometry, and immunofluorescence analyses. RESULTS: This study probed 39,562 single esophageal cells by single-cell RNA sequencing; approximately 5% of these cells were MCs. Dynamic MC expansion was identified across disease states. During homeostasis, TPSAB1highAREGhigh resident MCs were mainly detected in the lamina propria and exhibited a quiescent phenotype. In patients with active EoE, resident MCs assumed an activated phenotype, and 2 additional proinflammatory MC populations emerged in the intraepithelial compartment, each linked to a proliferating MKI67high cluster. One proinflammatory activated MC population, marked as KIThighIL1RL1highFCER1Alow, was not detected in disease remission (termed "transient MC"), whereas the other population, marked as CMA1highCTSGhigh, was detected in disease remission where it maintained an activated state (termed "persistent MC"). MCs were prominent producers of esophageal IL-13 mRNA and protein, a key therapeutic target in EoE. CONCLUSIONS: Esophageal MCs comprise heterogeneous populations with transcriptional signatures associated with distinct spatial compartmentalization and EoE disease status. In active EoE, they assume a proinflammatory state and locally proliferate, and they remain activated and poised to reinitiate inflammation even during disease remission.


Asunto(s)
Esofagitis Eosinofílica , Proliferación Celular , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/metabolismo , Humanos , Mastocitos/patología , Análisis de Secuencia de ARN
11.
J Allergy Clin Immunol ; 147(5): 1924-1935, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33289661

RESUMEN

BACKGROUND: Proton pump inhibitors (PPIs) have been recognized as a primary treatment of eosinophilic esophagitis (EoE), an allergic inflammatory disease of the esophageal mucosa. The mechanisms underlying esophageal epithelial responses to PPIs remain poorly understood. OBJECTIVE: We hypothesized that PPIs can counteract IL-13-mediated esophageal epithelial responses that are germane for EoE pathogenesis. METHODS: Transcriptional responses of human esophageal cells to IL-13 and the PPIs omeprazole and esomeprazole were assessed by RT-PCR and RNA sequencing. Cytokine secretion was measured by multiplex analysis and ELISA. RESULTS: Human esophageal epithelial cells robustly responded to PPI stimulation by inducing a set of 479 core genes common between omeprazole and esomeprazole treatments. The transcriptional response to PPIs was partially mediated through the aryl hydrocarbon receptor signaling pathway, as the aryl hydrocarbon receptor antagonist GNF-351 modified approximately 200 genes, particularly those enriched in metabolic processes and regulation of cell death. PPI treatment reversed approximately 20% of the IL-13 transcriptome. Functional analysis of the PPI-responsive, upregulated genes revealed enrichment in metabolic and oxidation processes, and the unfolded protein response. In contrast, downregulated genes were overrepresented in functional terms related to cell division and cytoskeletal organization, which were also enriched for the genes in the EoE transcriptome reversed by PPIs. Furthermore, PPI treatment decreased the IL-13-induced proliferative response of esophageal epithelial cells. CONCLUSIONS: These results demonstrate broad effects of PPIs on esophageal epithelium, including their ability to curtail transcriptomic processes involved in cellular proliferation and IL-13-induced responses, and they highlight the importance of AHR signaling in mediating these responses.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Mucosa Esofágica/citología , Interleucina-13/inmunología , Omeprazol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Receptores de Hidrocarburo de Aril/inmunología , Animales , Línea Celular , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/inmunología , Células Epiteliales/inmunología , Humanos , Ratones , Transcripción Genética/efectos de los fármacos
12.
J Allergy Clin Immunol ; 147(1): 255-266, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446330

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is an emerging, chronic, rare allergic disease associated with marked eosinophil accumulation in the esophagus. Previous genome-wide association studies have provided strong evidence for 3 genome-wide susceptibility loci. OBJECTIVE: We sought to replicate known and suggestive EoE genetic risk loci and conduct a meta-analysis of previously reported data sets. METHODS: An EoE-Custom single-nucleotide polymophism (SNP) Chip containing 956 candidate EoE risk single-nucleotide polymorphisms was used to genotype 627 cases and 365 controls. Statistical power was enhanced by adding 1959 external controls and performing meta-analyses with 2 independent EoE genome-wide association studies. RESULTS: Meta-analysis identified replicated association and genome-wide significance at 6 loci: 2p23 (2 independent genetic effects) and 5q22, 10p14, 11q13, and 16p13. Seven additional loci were identified at suggestive significance (P < 10-6): 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, and 22q13. From these risk loci, 13 protein-coding EoE candidate risk genes were expressed in a genotype-dependent manner. EoE risk genes were expressed in disease-relevant cell types, including esophageal epithelia, fibroblasts, and immune cells, with some expressed as a function of disease activity. The genetic risk burden of EoE-associated genetic variants was markedly larger in cases relative to controls (P < 10-38); individuals with the highest decile of genetic burden had greater than 12-fold risk of EoE compared with those within the lowest decile. CONCLUSIONS: This study extends the genetic underpinnings of EoE, highlighting 13 genes whose genotype-dependent expression expands our etiologic understanding of EoE and provides a framework for a polygenic risk score to be validated in future studies.


Asunto(s)
Esofagitis Eosinofílica/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Esofagitis Eosinofílica/inmunología , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo
13.
J Allergy Clin Immunol ; 145(6): 1629-1640.e4, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32197970

RESUMEN

BACKGROUND: There is strong evidence for a role of type 2 cytokines in the pathogenesis of eosinophilic esophagitis (EoE); however, heterogeneity in type 2 gene expression has not been examined. OBJECTIVE: We examined type 2 immunity-associated gene expression in esophageal biopsy specimens, aiming to determine the degree of cytokine heterogeneity and its potential clinical significance. METHODS: Patients (n = 312) were recruited from 10 sites associated with the Consortium of Eosinophilic Gastrointestinal Disease Researchers. In addition to histologic and endoscopic assessment, esophageal biopsy specimens were examined for expression of 96 genes within the EoE diagnostic panel. RESULTS: Five subgroups of patients with active EoE were identified by unsupervised clustering based on expression of IL4, IL5, IL13, C-C motif chemokine ligand 26 (CCL26), thymic stromal lymphopoietin (TSLP), Charcot-Leyden crystal (CLC), C-C motif chemokine receptor 3 (CCR3), and CPA3. These groups differed in age (P < .02) and EoE diagnostic panel score (P < 1.08E-30) but not in eosinophil levels. The group V patients had the highest expression of IL5, TSLP, and CCL26 and genes associated with tissue remodeling, such as COL8A1, actin γ-2 (ACTG2), and tetraspanin 12 (TSPAN12). IL5 and IL13 were highly expressed in group IV; however, groups IV and V differed in age (34 vs 14 years [P < .05]). Groups II and III, which exhibited intermediate expression of IL5 and CPA3, were differentiated by high TSLP and IL13 in group III. CONCLUSION: We observed heterogeneous type 2 gene expression among patients with active EoE. Type 2 gene overexpression was not directly proportional to disease features; this was especially true for tissue remodeling events. These findings highlight a clinical opportunity for leveraging molecular endotypes to implement personalized medicine in EoE.


Asunto(s)
Citocinas/inmunología , Esofagitis Eosinofílica/inmunología , Eosinófilos/inmunología , Esófago/inmunología , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Femenino , Expresión Génica/inmunología , Humanos , Masculino , Persona de Mediana Edad
14.
J Allergy Clin Immunol ; 145(1): 255-269, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31738990

RESUMEN

BACKGROUND: Eosinophilic gastritis (EG) is a clinicopathologic disorder with marked gastric eosinophilia and clinical symptoms. There is an unmet need among patients with EG for more precise diagnostic tools. OBJECTIVE: We aimed to develop tissue- and blood-based diagnostic platforms for EG. METHODS: Patients with EG and control subjects without EG were enrolled across 9 Consortium of Eosinophilic Gastrointestinal Disease Researchers-associated sites. An EG Diagnostic Panel (EGDP; gastric transcript subset) and EG blood biomarker panel (protein multiplex array) were analyzed. EGDP18 scores were derived from the expression of 18 highly dysregulated genes, and blood EG scores were derived from dysregulated cytokine/chemokine levels. RESULTS: Gastric biopsy specimens and blood samples from 185 subjects (patients with EG, n = 74; control subjects without EG, n = 111) were analyzed. The EGDP (1) identified patients with active EG (P < .0001, area under the curve ≥ 0.95), (2) effectively monitored disease activity in longitudinal samples (P = .0078), (3) highly correlated in same-patient samples (antrum vs body, r = 0.85, P < .0001), and (4) inversely correlated with gastric peak eosinophil levels (r = -0.83, P < .0001), periglandular circumferential collars (r = -0.73, P < .0001), and endoscopic nodularity (r = -0.45, P < .0001). For blood-based platforms, eotaxin-3, thymus and activation-regulated chemokine, IL-5, and thymic stromal lymphopoietin levels were significantly increased. Blood EG scores (1) distinguished patients with EG from control subjects without EG (P < .0001, area under the curve ≥ 0.91), (2) correlated with gastric eosinophil levels (plasma: r = 0.72, P = .0002; serum: r = 0.54, P = .0015), and (3) inversely correlated with EGDP18 scores (plasma: r = -0.64, P = .0015; serum: r = -0.46, P = .0084). Plasma eotaxin-3 levels strongly associated with gastric CCL26 expression (r = 0.81, P < .0001). CONCLUSION: We developed tissue- and blood-based platforms for assessment of EG and uncovered robust associations between specific gastric molecular profiles and histologic and endoscopic features, providing insight and clinical readiness tools for this emerging rare disease.


Asunto(s)
Citocinas , Endoscopía Gastrointestinal , Enteritis , Eosinofilia , Gastritis , Adolescente , Adulto , Biomarcadores/sangre , Niño , Citocinas/sangre , Citocinas/inmunología , Enteritis/sangre , Enteritis/diagnóstico , Enteritis/inmunología , Enteritis/patología , Eosinofilia/sangre , Eosinofilia/diagnóstico , Eosinofilia/inmunología , Eosinofilia/patología , Femenino , Gastritis/sangre , Gastritis/diagnóstico , Gastritis/inmunología , Gastritis/patología , Humanos , Masculino
15.
J Allergy Clin Immunol ; 142(6): 1843-1855, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29729938

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is characterized by histopathologic modifications of esophageal tissue, including eosinophil-rich inflammation, basal zone hyperplasia, and dilated intercellular spaces (DIS). The underlying molecular processes that drive the histopathologic features of EoE remain largely unexplored. OBJECTIVE: We sought to investigate the involvement of solute carrier family 9, subfamily A, member 3 (SLC9A3) in esophageal epithelial intracellular pH (pHi) and DIS formation and the histopathologic features of EoE. METHODS: We examined expression of esophageal epithelial gene networks associated with regulation of pHi in the EoE transcriptome of primary esophageal epithelial cells and an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI). Molecular and cellular analyses and ion transport assays were used to evaluate the expression and function of SLC9A3. RESULTS: We identified altered expression of gene networks associated with regulation of pHi and acid-protective mechanisms in esophageal biopsy specimens from pediatric patients with EoE (healthy subjects, n = 6; patients with EoE, n = 10). The most dysregulated gene central to regulating pHi was SLC9A3. SLC9A3 expression was increased within the basal layer of esophageal biopsy specimens from patients with EoE, and expression positively correlated with disease severity (eosinophils/high-power field) and DIS (healthy subjects, n = 10; patients with EoE, n = 10). Analyses of esophageal epithelial cells revealed IL-13-induced, signal transducer and activator of transcription 6-dependent SLC9A3 expression and Na+-dependent proton secretion and that SLC9A3 activity correlated positively with DIS formation. Finally, we showed that IL-13-mediated, Na+-dependent proton secretion was the primary intracellular acid-protective mechanism within the esophageal epithelium and that blockade of SLC9A3 transport abrogated IL-13-induced DIS formation. CONCLUSIONS: SLC9A3 plays a functional role in DIS formation, and pharmacologic interventions targeting SLC9A3 function may suppress the histopathologic manifestations in patients with EoE.


Asunto(s)
Esofagitis Eosinofílica/metabolismo , Células Epiteliales/química , Espacio Extracelular , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Línea Celular , Esofagitis Eosinofílica/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Esófago/patología , Guanidinas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Interleucina-13/farmacología , Metacrilatos/farmacología , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores
17.
J Allergy Clin Immunol ; 140(3): 738-749.e3, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28104354

RESUMEN

BACKGROUND: A key question in the allergy field is to understand how tissue-specific disease is manifested. Eosinophilic esophagitis (EoE) is an emerging tissue-specific allergic disease with an unclear pathogenesis. OBJECTIVE: Herein we tested the hypothesis that a defect in tissue-specific esophageal genes is an integral part of EoE pathogenesis. METHODS: We interrogated the pattern of expression of esophagus-specific signature genes derived from the Human Protein Atlas in the EoE transcriptome and in EPC2 esophageal epithelial cells. Western blotting and immunofluorescence were used for evaluating expression of esophageal proteins in biopsy specimens from control subjects and patients with active EoE. Whole-exome sequencing was performed to identify mutations in esophagus-specific genes. RESULTS: We found that approximately 39% of the esophagus-specific transcripts were altered in patients with EoE, with approximately 90% being downregulated. The majority of transcriptional changes observed in esophagus-specific genes were reproduced in vitro in esophageal epithelial cells differentiated in the presence of IL-13. Functional enrichment analysis revealed keratinization and differentiation as the most affected biological processes and identified IL-1 cytokines and serine peptidase inhibitors as the most dysregulated esophagus-specific protein families in patients with EoE. Accordingly, biopsy specimens from patients with EoE evidenced a profound loss of tissue differentiation, decreased expression of keratin 4 (KRT4) and cornulin (CRNN), and increased expression of KRT5 and KRT14. Whole-exome sequencing of 33 unrelated patients with EoE revealed 39 rare mutations in 18 esophagus-specific differentially expressed genes. CONCLUSIONS: A tissue-centered analysis has revealed a profound loss of esophageal tissue differentiation (identity) as an integral and specific part of the pathophysiology of EoE and implicated protease- and IL-1-related activities as putative central pathways in disease pathogenesis.


Asunto(s)
Esofagitis Eosinofílica/genética , Esófago/metabolismo , Adolescente , Diferenciación Celular/efectos de los fármacos , Niño , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Interleucina-13/farmacología , Masculino , Mutación , Transcriptoma
18.
J Allergy Clin Immunol ; 134(5): 1114-24, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25234644

RESUMEN

BACKGROUND: The definition of eosinophilic gastritis (EG) is currently limited to histologic EG based on the tissue eosinophil count. OBJECTIVE: We aimed to provide additional fundamental information about the molecular, histopathologic, and clinical characteristics of EG. METHODS: Genome-wide transcript profiles and histologic features of gastric biopsy specimens, as well as blood eosinophil counts, were analyzed in patients with EG and control subjects (n = 15 each). RESULTS: The peak gastric antrum eosinophil count was 283 ± 164 eosinophils/×400 high-power field in patients with EG and 11 ± 9 eosinophils/×400 high-power field in control subjects (P = 6.1 × 10(-7)). Patients with EG (87%) had coexisting eosinophilic inflammation in multiple gastrointestinal segments; the esophagus represented the most common secondary site. Increased peripheral blood eosinophil counts (patients with EG: 1.09 ± 0.88 × 10(3)/µL vs control subjects: 0.09 ± 0.08 10(3)/µL, P = .0027) positively correlated with peak gastric eosinophil counts (Pearson r(2) = .8102, P < .0001). MIB-1(+) (proliferating), CD117(+) (mast cells), and FOXP3(+) (regulatory T cells, activated T cells, or both) cell counts were increased in patients with EG. Transcript profiling revealed changes in 8% of the genome in gastric tissue from patients with EG. Only 7% of this EG transcriptome overlapped with the eosinophilic esophagitis transcriptome. Significantly increased IL4, IL5, IL13, IL17, CCL26, and mast cell-specific transcripts and decreased IL33 transcripts were observed. CONCLUSION: EG is a systemic disorder involving profound blood and gastrointestinal tract eosinophilia, TH2 immunity, and a conserved gastric transcriptome markedly distinct from the eosinophilic esophagitis transcriptome. The data herein define germane cellular and molecular pathways of EG and provide a basis for improving diagnosis and treatment.


Asunto(s)
Citocinas/inmunología , Enteritis/inmunología , Eosinofilia/inmunología , Gastritis/inmunología , Estómago/inmunología , Células Th2/inmunología , Transcriptoma/inmunología , Adolescente , Adulto , Niño , Preescolar , Citocinas/biosíntesis , Enteritis/sangre , Enteritis/patología , Eosinofilia/sangre , Eosinofilia/patología , Eosinófilos/inmunología , Eosinófilos/metabolismo , Eosinófilos/patología , Femenino , Mucosa Gástrica/metabolismo , Gastritis/sangre , Gastritis/patología , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Masculino , Estómago/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th2/metabolismo , Células Th2/patología
19.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961565

RESUMEN

Background: Eosinophilic esophagitis (EoE) is diagnosed and monitored using esophageal eosinophil levels; however, EoE also exhibits a marked, understudied esophageal mastocytosis. Objective: Using machine learning, we localized and characterized esophageal mast cells to decipher their potential role in disease pathology. Methods: Esophageal biopsy samples (EoE, control) were stained for mast cells by anti-tryptase and imaged using immunofluorescence; high-resolution whole tissue images were digitally assembled. Machine learning software was trained to identify, enumerate, and characterize mast cells, designated Mast Cell-Artificial Intelligence (MC-AI). Results: MC-AI enumerated cell counts with high accuracy. During active EoE, epithelial mast cells increased and lamina propria (LP) mast cells decreased. In controls and EoE remission patients, papillae had the highest mast cell density and negatively correlated with epithelial mast cell density. Mast cell density in the epithelium and papillae correlated with the degree of epithelial eosinophilic inflammation, basal zone hyperplasia, and LP fibrosis. MC-AI detected greater mast cell degranulation in the epithelium, papillae, and LP in EoE patients compared with control individuals. Mast cells were localized further from the basement membrane in active EoE than EoE remission and controls individuals but were closer than eosinophils to the basement membrane in active EoE. Conclusion: Using MC-AI, we identified a distinct population of homeostatic esophageal papillae mast cells; during active EoE, this population decreases, undergoes degranulation, negatively correlates with epithelial mast cell levels, and significantly correlates with distinct histologic features. Overall, MC-AI provides a means to understand the potential involvement of mast cells in EoE and other disorders. Clinical Implication: We have developed a methodology for identifying, enumerating, and characterizing mast cells using artificial intelligence; this has been applied to decipher eosinophilic esophagitis and provides a platform approach for other diseases. Capsule Summary: A machine learning protocol for identifying mast cells, designated Mast Cell-Artificial Intelligence, readily identified spatially distinct and dynamic populations of mast cells in EoE, providing a platform to better understand this cell type in EoE and other diseases.

20.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490338

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic gastrointestinal disorder characterized by food antigen-driven eosinophilic inflammation and hyperproliferation of esophageal mucosa. By utilizing a large-scale, proteomic screen of esophageal biopsies, we aimed to uncover molecular drivers of the disease. Proteomic analysis by liquid chromatography-tandem mass spectrometry identified 402 differentially expressed proteins (DEPs) that correlated with the EoE transcriptome. Immune cell-related proteins were among the most highly upregulated DEPs in EoE compared with controls, whereas proteins linked to epithelial differentiation were primarily downregulated. Notably, in the inflamed esophageal tissue, all 6 subunits of the minichromosome maintenance (MCM) complex, a DNA helicase essential for genomic DNA replication, were significantly upregulated at the gene and protein levels. Furthermore, treating esophageal epithelial cells with a known inhibitor of the MCM complex (ciprofloxacin) blocked esophageal epithelial proliferation. In a murine model of EoE driven by overexpression of IL-13, ciprofloxacin treatment decreased basal zone thickness and reduced dilated intercellular spaces by blocking the transition of epithelial cells through the S-phase of the cell cycle. Collectively, a broad-spectrum proteomic screen has identified the involvement of the MCM complex in EoE and has highlighted MCM inhibitors as potential therapeutic agents for the disease.


Asunto(s)
Esofagitis Eosinofílica , Proteómica , Humanos , Animales , Ratones , Hiperplasia/patología , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA