Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(17-18): 1190-1209, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820037

RESUMEN

Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/embriología , Epigénesis Genética , Células-Madre Neurales/citología , Neurogénesis/genética , Animales , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL
2.
EMBO J ; 42(22): e113524, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37743770

RESUMEN

For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.


Asunto(s)
Giro Dentado , Hipocampo , Animales , Giro Dentado/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Aprendizaje , Memoria/fisiología , Neurogénesis/fisiología , Mamíferos
3.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070770

RESUMEN

Communication between the nervous and immune system is crucial for development, homeostasis and response to injury. Before the onset of neurogenesis, microglia populate the central nervous system, serving as resident immune cells over the course of life. Here, we describe new roles of an uncharacterized transcript upregulated by neurogenic progenitors during mouse corticogenesis: 4931414P19Rik (hereafter named P19). Overexpression of P19 cell-extrinsically inhibited neuronal migration and acted as chemoattractant of microglial cells. Interestingly, effects on neuronal migration were found to result directly from P19 secretion by neural progenitors triggering microglia accumulation within the P19 targeted area. Our findings highlight the crucial role of microglia during brain development and identify P19 as a previously unreported player in the neuro-immune crosstalk.


Asunto(s)
Microglía , Neurogénesis , Animales , Ratones , Neurogénesis/fisiología , Sistema Nervioso Central , Sistema Inmunológico , Movimiento Celular , Encéfalo/fisiología
4.
EMBO J ; 40(18): e107100, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34337766

RESUMEN

Adult neurogenesis enables the life-long addition of functional neurons to the hippocampus and is regulated by both cell-intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult-born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up-regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus-dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN , Hipocampo/fisiología , Neurogénesis/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Animales , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica , Ratones
5.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35147187

RESUMEN

Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Movimiento Celular , Corteza Cerebral/metabolismo , Cromatina/metabolismo , Desarrollo Embrionario/genética , Femenino , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
6.
Cell Mol Life Sci ; 81(1): 334, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115595

RESUMEN

Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Microcefalia , Retículo Endoplásmico/metabolismo , Animales , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patología , Ratones , Aparato de Golgi/metabolismo , Humanos , Mutación , Transporte de Proteínas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Neuronas/metabolismo , Neuronas/patología
7.
EMBO J ; 39(21): e105479, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985705

RESUMEN

Structural integrity and cellular homeostasis of the embryonic stem cell niche are critical for normal tissue development. In the telencephalic neuroepithelium, this is controlled in part by cell adhesion molecules and regulators of progenitor cell lineage, but the specific orchestration of these processes remains unknown. Here, we studied the role of microRNAs in the embryonic telencephalon as key regulators of gene expression. By using the early recombiner Rx-Cre mouse, we identify novel and critical roles of miRNAs in early brain development, demonstrating they are essential to preserve the cellular homeostasis and structural integrity of the telencephalic neuroepithelium. We show that Rx-Cre;DicerF/F mouse embryos have a severe disruption of the telencephalic apical junction belt, followed by invagination of the ventricular surface and formation of hyperproliferative rosettes. Transcriptome analyses and functional experiments in vivo show that these defects result from upregulation of Irs2 upon loss of let-7 miRNAs in an apoptosis-independent manner. Our results reveal an unprecedented relevance of miRNAs in early forebrain development, with potential mechanistic implications in pediatric brain cancer.


Asunto(s)
Homeostasis , Proteínas Sustrato del Receptor de Insulina/metabolismo , MicroARNs/metabolismo , Proteínas Represoras/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Uniones Adherentes , Animales , Apoptosis , Proliferación Celular , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras/genética , Células Madre/metabolismo , Telencéfalo/citología , Factores de Transcripción/metabolismo
8.
EMBO J ; 38(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30643018

RESUMEN

Adult neurogenesis is involved in cognitive performance but studies that manipulated this process to improve brain function are scarce. Here, we characterized a genetic mouse model in which neural stem cells (NSC) of the subventricular zone (SVZ) were temporarily expanded by conditional expression of the cell cycle regulators Cdk4/cyclinD1, thus increasing neurogenesis. We found that supernumerary neurons matured and integrated in the olfactory bulb similarly to physiologically generated newborn neurons displaying a correct expression of molecular markers, morphology and electrophysiological activity. Olfactory performance upon increased neurogenesis was unchanged when mice were tested on relatively easy tasks using distinct odor stimuli. In contrast, intriguingly, increasing neurogenesis improved the discrimination ability of mice when challenged with a difficult task using mixtures of highly similar odorants. Together, our study provides a mammalian model to control the expansion of somatic stem cells that can in principle be applied to any tissue for basic research and models of therapy. By applying this to NSC of the SVZ, we highlighted the importance of adult neurogenesis to specifically improve performance in a challenging olfactory task.


Asunto(s)
Aprendizaje Discriminativo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Odorantes/análisis , Bulbo Olfatorio/fisiología , Animales , Ciclina D1/fisiología , Quinasa 4 Dependiente de la Ciclina/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos
9.
Development ; 147(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32273274

RESUMEN

MicroRNAs (miRNAs) are short (∼22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over recent years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs expressed in a cell-specific manner in progenitor types of the developing mammalian cortex is still missing. Overcoming this limitation, here we exploited a double reporter mouse line previously validated by our group to allow the identification of the transcriptional signature of neurogenic commitment and provide the field with the complete atlas of miRNA expression in proliferating neural stem cells, neurogenic progenitors and newborn neurons during corticogenesis. By extending the currently known list of miRNAs expressed in the mouse brain by over twofold, our study highlights the power of cell type-specific analyses for the detection of transcripts that would otherwise be diluted out when studying bulk tissues. We further exploited our data by predicting putative miRNAs and validated the power of our approach by providing evidence for the involvement of miR-486 in brain development.


Asunto(s)
MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Northern Blotting , Biología Computacional/métodos , Electroporación , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis/genética , Neurogénesis/fisiología
10.
Hippocampus ; 31(10): 1068-1079, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174010

RESUMEN

Adult neurogenesis in the hippocampal dentate gyrus (DG) is an extraordinary form of plasticity fundamental for cognitive flexibility. Recent evidence showed that newborn neurons differentially modulate input to the infra- and supra-pyramidal blades of the DG during the processing of spatial and contextual information, respectively. However, how this differential regulation by neurogenesis is translated into different aspects contributing cognitive flexibility is unclear. Here, we increased adult-born neurons by a genetic expansion of neural stem cells and studied their influence during navigational learning. We found that increased neurogenesis improved both memory precision and flexibility. Interestingly, each of these gains was associated with distinct subregional patterns of activity and better separation of memory representations in the DG-CA3 network. Our results highlight the role of adult-born neurons in promoting memory precision and indexing and suggests their anatomical allocation within specific DG-CA3 compartments, together contributing to cognitive flexibility.


Asunto(s)
Giro Dentado , Células-Madre Neurales , Cognición/fisiología , Giro Dentado/fisiología , Neurogénesis/fisiología , Neuronas/fisiología
11.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30329130

RESUMEN

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Metiltransferasas/genética , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , División Celular/genética , Proliferación Celular/genética , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Metilación , Ratones , Neuronas/patología , Proteínas Represoras/genética , Factores de Transcripción SOXD/genética , Proteínas de Dominio T Box , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Telencéfalo/patología , Proteínas Supresoras de Tumor/genética
12.
EMBO J ; 35(1): 24-45, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26516211

RESUMEN

Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Epigénesis Genética , Redes Reguladoras de Genes , Ratones
13.
EMBO J ; 35(8): 803-19, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929011

RESUMEN

A mutation in the centrosomal-P4.1-associated protein (CPAP) causes Seckel syndrome with microcephaly, which is suggested to arise from a decline in neural progenitor cells (NPCs) during development. However, mechanisms ofNPCs maintenance remain unclear. Here, we report an unexpected role for the cilium inNPCs maintenance and identifyCPAPas a negative regulator of ciliary length independent of its role in centrosome biogenesis. At the onset of cilium disassembly,CPAPprovides a scaffold for the cilium disassembly complex (CDC), which includes Nde1, Aurora A, andOFD1, recruited to the ciliary base for timely cilium disassembly. In contrast, mutatedCPAPfails to localize at the ciliary base associated with inefficientCDCrecruitment, long cilia, retarded cilium disassembly, and delayed cell cycle re-entry leading to premature differentiation of patientiPS-derivedNPCs. AberrantCDCfunction also promotes premature differentiation ofNPCs in SeckeliPS-derived organoids. Thus, our results suggest a role for cilia in microcephaly and its involvement during neurogenesis and brain size control.


Asunto(s)
Cilios/metabolismo , Microcefalia/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/patología , Aurora Quinasa A/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Cilios/genética , Cilios/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/fisiología , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Células-Madre Neurales/metabolismo , Proteínas/metabolismo , Síndrome
14.
EMBO J ; 34(23): 2865-84, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26516210

RESUMEN

Evidence on the role of long non-coding (lnc) RNAs has been accumulating over decades, but it has been only recently that advances in sequencing technologies have allowed the field to fully appreciate their abundance and diversity. Despite this, only a handful of lncRNAs have been phenotypically or mechanistically studied. Moreover, novel lncRNAs and new classes of RNAs are being discovered at growing pace, suggesting that this class of molecules may have functions as diverse as protein-coding genes. Interestingly, the brain is the organ where lncRNAs have the most peculiar features including the highest number of lncRNAs that are expressed, proportion of tissue-specific lncRNAs and highest signals of evolutionary conservation. In this work, we critically review the current knowledge about the steps that have led to the identification of the non-coding transcriptome including the general features of lncRNAs in different contexts in terms of both their genomic organisation, evolutionary origin, patterns of expression, and function in the developing and adult mammalian brain.


Asunto(s)
Encéfalo/metabolismo , ARN Largo no Codificante/genética , Animales , Encéfalo/embriología , Humanos , Células-Madre Neurales/metabolismo
15.
EMBO J ; 34(7): 896-910, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25527292

RESUMEN

Major efforts are invested to characterize the factors controlling the proliferation of neural stem cells. During mammalian corticogenesis, our group has identified a small pool of genes that are transiently downregulated in the switch of neural stem cells to neurogenic division and reinduced in newborn neurons. Among these switch genes, we found Tox, a transcription factor with hitherto uncharacterized roles in the nervous system. Here, we investigated the role of Tox in corticogenesis by characterizing its expression at the tissue, cellular and temporal level. We found that Tox is regulated by calcineurin/Nfat signalling. Moreover, we combined DNA adenine methyltransferase identification (DamID) with deep sequencing to characterize the chromatin binding properties of Tox including its motif and downstream transcriptional targets including Sox2, Tbr2, Prox1 and other key factors. Finally, we manipulated Tox in the developing brain and validated its multiple roles in promoting neural stem cell proliferation and neurite outgrowth of newborn neurons. Our data provide a valuable resource to study the role of Tox in other tissues and highlight a novel key player in brain development.


Asunto(s)
Calcineurina/metabolismo , Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología , Animales , Calcineurina/genética , Proliferación Celular/fisiología , Corteza Cerebral/citología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Ratones , Factores de Transcripción NFATC/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/genética , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética
16.
Development ; 143(17): 3143-53, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27471254

RESUMEN

Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neocórtex/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Proteínas Portadoras/genética , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Electroporación , Femenino , Proteínas de Unión al GTP , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Neocórtex/citología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Serina Endopeptidasas/genética
17.
Development ; 143(1): 66-74, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26732839

RESUMEN

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Asunto(s)
Ganglios Basales/citología , Ganglios Basales/embriología , Neocórtex/embriología , Células-Madre Neurales/citología , Neuronas/citología , Ambystoma mexicanum , Animales , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Monodelphis/embriología , Neocórtex/citología , Tortugas/embriología , Xenopus laevis
18.
EMBO J ; 32(13): 1817-28, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23624932

RESUMEN

Size and folding of the cerebral cortex increased massively during mammalian evolution leading to the current diversity of brain morphologies. Various subtypes of neural stem and progenitor cells have been proposed to contribute differently in regulating thickness or folding of the cerebral cortex during development, but their specific roles have not been demonstrated. We report that the controlled expansion of unipotent basal progenitors in mouse embryos led to megalencephaly, with increased surface area of the cerebral cortex, but not to cortical folding. In contrast, expansion of multipotent basal progenitors in the naturally gyrencephalic ferret was sufficient to drive the formation of additional folds and fissures. In both models, changes occurred while preserving a structurally normal, six-layered cortex. Our results are the first experimental demonstration of specific and distinct roles for basal progenitor subtypes in regulating cerebral cortex size and folding during development underlying the superior intellectual capability acquired by higher mammals during evolution.


Asunto(s)
Encéfalo/fisiología , Diferenciación Celular , Corteza Cerebral/fisiología , Embrión de Mamíferos/fisiología , Proteínas de Filamentos Intermediarios/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Madre/fisiología , Animales , Encéfalo/citología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Hurones , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nestina , Células Madre/citología
19.
EMBO J ; 32(24): 3145-60, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24240175

RESUMEN

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.


Asunto(s)
Encéfalo/embriología , Perfilación de la Expresión Génica/métodos , Células-Madre Neurales/fisiología , ARN Largo no Codificante/genética , Empalme Alternativo , Animales , Encéfalo/citología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Neurogénesis , Neuronas , Fenotipo , Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Wnt/genética
20.
Development ; 140(13): 2818-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23757413

RESUMEN

Generation of transgenic mice, in utero electroporation and viral injection are common approaches to manipulate gene expression during embryonic development of the mammalian brain. While very powerful in many contexts, these approaches are each characterized by their own limitations: namely, that generation of transgenic mice is time-consuming and electroporation only allows the targeting of a small area of the brain. Similarly, viral injection has been predominantly characterized by using retroviruses or adenoviruses that are limited by a relatively low infectivity or lack of integration, respectively. Here we report the use of integrating lentiviral vectors as a system to achieve widespread and efficient infection of the whole brain after in utero injection in the telencephalic ventricle of mouse embryos. In addition, we explored the use of Cre-mediated recombination of loxP-containing lentiviral vectors to achieve spatial and temporal control of gene expression of virtually any transgene without the need for generation of additional mouse lines. Our work provides a system to overcome the limitations of retroviruses and adenoviruses by achieving widespread and high efficiency of transduction. The combination of lentiviral injection and site-specific recombination offers a fast and efficient alternative to complement and diversify the current methodologies to acutely manipulate gene expression in developing mammalian embryos.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Expresión Génica/genética , Lentivirus/genética , Animales , Embrión de Mamíferos/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA