Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mol Genet ; 31(21): 3613-3628, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35179202

RESUMEN

A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson's disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Agregado de Proteínas , Enfermedad de Parkinson/metabolismo , Fosforilación
2.
Proc Natl Acad Sci U S A ; 115(22): E5164-E5173, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760073

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.


Asunto(s)
Citofagocitosis/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Células Mieloides/citología , Enfermedad de Parkinson/fisiopatología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Línea Celular , Drosophila , Humanos , Ratones , Microglía , Células Mieloides/fisiología , Transducción de Señal/fisiología
3.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30967472

RESUMEN

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F4/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Proteínas Represoras/biosíntesis , Accidente Cerebrovascular/metabolismo , Transactivadores/biosíntesis , Secuencias de Aminoácidos , Animales , Muerte Celular , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F4/genética , Ratones , Ratones Transgénicos , Neuronas/patología , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Transactivadores/genética
4.
J Neurochem ; 150(3): 312-329, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30734931

RESUMEN

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Enfermedad de Parkinson/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
5.
J Neurosci ; 37(28): 6729-6740, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607169

RESUMEN

Dysregulation of cell cycle machinery is implicated in a number of neuronal death contexts, including stroke. Increasing evidence suggests that cyclin-dependent kinases (Cdks) are inappropriately activated in mature neurons under ischemic stress conditions. We previously demonstrated a functional role for the cyclin D1/Cdk4/pRb (retinoblastoma tumor suppressor protein) pathway in delayed neuronal death induced by ischemia. However, the molecular signals leading to cyclin D/Cdk4/pRb activation following ischemic insult are presently not clear. Here, we investigate the cell division cycle 25 (Cdc25) dual-specificity phosphatases as potential upstream regulators of ischemic neuronal death and Cdk4 activation. We show that a pharmacologic inhibitor of Cdc25 family members (A, B, and C) protects mouse primary neurons from hypoxia-induced delayed death. The major contributor to the death process appears to be Cdc25A. shRNA-mediated knockdown of Cdc25A protects neurons in a delayed model of hypoxia-induced death in vitro Similar results were observed in vivo following global ischemia in the rat. In contrast, neurons singly or doubly deficient for Cdc25B/C were not significantly protective. We show that Cdc25A activity, but not level, is upregulated in vitro following hypoxia and global ischemic insult in vivo Finally, we show that shRNA targeting Cdc25A blocks Ser795 pRb phosphorylation. Overall, our results indicate a role for Cdc25A in delayed neuronal death mediated by ischemia.SIGNIFICANCE STATEMENT A major challenge in stroke is finding an effective neuroprotective strategy to treat cerebral ischemic injury. Cdc25 family member A (Cdc25A) is a phosphatase normally activated during cell division in proliferating cells. We found that Cdc25A is activated in neurons undergoing ischemic stress mediated by hypoxia in vitro and global cerebral ischemia in rats in vivo We show that pharmacologic or genetic inhibition of Cdc25A activity protects neurons from delayed death in vitro and in vivo Downregulation of Cdc25A led to reduction in retinoblastoma tumor suppressor protein (pRb) phosphorylation. An increase in pRb phosphorylation has been previously linked to ischemic neuronal death. Our results identify Cdc25A as a potential target for neuroprotectant strategy for the treatment of delayed ischemic neuronal death.


Asunto(s)
Apoptosis , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Fosfatasas cdc25/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
6.
J Biol Chem ; 289(26): 18202-13, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24828495

RESUMEN

Inappropriate activation of cell cycle proteins, in particular cyclin D/Cdk4, is implicated in neuronal death induced by various pathologic stresses, including DNA damage and ischemia. Key targets of Cdk4 in proliferating cells include members of the E2F transcription factors, which mediate the expression of cell cycle proteins as well as death-inducing genes. However, the presence of multiple E2F family members complicates our understanding of their role in death. We focused on whether E2F4, an E2F member believed to exhibit crucial control over the maintenance of a differentiated state of neurons, may be critical in ischemic neuronal death. We observed that, in contrast to E2F1 and E2F3, which sensitize to death, E2F4 plays a crucial protective role in neuronal death evoked by DNA damage, hypoxia, and global ischemic insult both in vitro and in vivo. E2F4 occupies promoter regions of proapoptotic factors, such as B-Myb, under basal conditions. Following stress exposure, E2F4-p130 complexes are lost rapidly along with the presence of E2F4 at E2F-containing B-Myb promoter sites. In contrast, the presence of E2F1 at B-Myb sites increases with stress. Furthermore, B-Myb and C-Myb expression increases with ischemic insult. Taken together, we propose a model by which E2F4 plays a protective role in neurons from ischemic insult by forming repressive complexes that prevent prodeath factors such as Myb from being expressed.


Asunto(s)
Factor de Transcripción E2F4/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/citología , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Factor de Transcripción E2F4/genética , Humanos , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Ratones Noqueados , Neuronas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Ratas Wistar , Proteína p130 Similar a la del Retinoblastoma/genética , Transactivadores/genética , Transactivadores/metabolismo
7.
Hum Mol Genet ; 21(22): 4888-903, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22872702

RESUMEN

Mutations in several genes, including Parkin, PTEN-induced kinase 1 (Pink1) and DJ-1, are associated with rare inherited forms of Parkinson's disease (PD). Despite recent attention on the function of these genes, the interplay between DJ-1, Pink1 and Parkin in PD pathogenesis remains unclear. In particular, whether these genes regulate mitochondrial control pathways in neurons is highly controversial. Here we report that Pink1-dependent Parkin translocation does occur in mouse cortical neurons in response to a variety of mitochondrial damaging agents. This translocation only occurs in the absence of antioxidants in the neuronal culturing medium, implicating a key role of reactive oxygen species (ROS) in this response. Consistent with these observations, ROS blockers also prevent Parkin recruitment in mouse embryonic fibroblasts. Loss of DJ-1, a gene linked to ROS management, results in increased stress-induced Parkin recruitment and increased mitophagy. Expression of wild-type DJ-1, but not a cysteine-106 mutant associated with defective ROS response, rescues this accelerated Parkin recruitment. Interestingly, DJ-1 levels increase at mitochondria following oxidative damage in both fibroblasts and neurons, and this process also depends on Parkin and possibly Pink1. These results not only highlight the presence of a Parkin/Pink1-mediated pathway of mitochondrial quality control (MQC) in neurons, they also delineate a complex reciprocal relationship between DJ-1 and the Pink1/Parkin pathway of MQC.


Asunto(s)
Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular , Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Transporte de Proteínas , Rotenona/farmacología , Transducción de Señal
8.
NPJ Parkinsons Dis ; 10(1): 65, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504090

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and presents pathologically with Lewy pathology and dopaminergic neurodegeneration. Lewy pathology contains aggregated α-synuclein (αSyn), a protein encoded by the SNCA gene which is also mutated or duplicated in a subset of familial PD cases. Due to its predominant presynaptic localization, immunostaining for the protein results in a diffuse reactivity pattern, providing little insight into the types of cells expressing αSyn. As a result, insight into αSyn expression-driven cellular vulnerability has been difficult to ascertain. Using a combination of knock-in mice that target αSyn to the nucleus (SncaNLS) and in situ hybridization of Snca in wild-type mice, we systematically mapped the topography and cell types expressing αSyn in the mouse brain, spinal cord, retina, and gut. We find a high degree of correlation between αSyn protein and RNA levels and further identify cell types with low and high αSyn content. We also find high αSyn expression in neurons, particularly those involved in PD, and to a lower extent in non-neuronal cell types, notably those of oligodendrocyte lineage, which are relevant to multiple system atrophy pathogenesis. Surprisingly, we also found that αSyn is relatively absent from select neuron types, e.g., ChAT-positive motor neurons, whereas enteric neurons universally express some degree of αSyn. Together, this integrated atlas provides insight into the cellular topography of αSyn, and provides a quantitative map to test hypotheses about the role of αSyn in network vulnerability, and thus serves investigations into PD pathogenesis and other α-synucleinopathies.

9.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575601

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , Ratas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/metabolismo , Sinucleinopatías/patología
10.
Proc Natl Acad Sci U S A ; 107(7): 3186-91, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133695

RESUMEN

Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H(2)O(2) in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Neurotoxinas/metabolismo , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Western Blotting , Fraccionamiento Celular , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Inmunohistoquímica , Ratones , Neuronas/metabolismo , Peroxirredoxinas , Fosforilación , Proteína Desglicasa DJ-1
11.
iScience ; 26(4): 106350, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37009224

RESUMEN

SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox" for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code" in cells of the central nervous system.

12.
J Neurosci ; 29(40): 12497-505, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19812325

RESUMEN

Recent evidence suggests that abnormal activation of cyclin-dependent kinase 5 (cdk5) is a critical prodeath signal in stroke. However, the mechanism(s) by which cdk5 promotes death is unclear. Complicating the role of cdk5 are the observations that cdk5 can exist in multiple cellular regions and possess both prosurvival and prodeath characteristics. In particular, the critical role of cytoplasmic or nuclear cdk5 in neuronal jury, in vivo, is unclear. Therefore, we determined where cdk5 was activated in models of ischemia and how manipulation of cdk5 in differing compartments may affect neuronal death. Here, we show a critical function for cytoplasmic cdk5 in both focal and global models of stroke, in vivo. Cdk5 is activated in the cytoplasm and expression of DNcdk5 localized to the cytoplasm is protective. Importantly, we also demonstrate the antioxidant enzyme Prx2 (peroxiredoxin 2) as a critical cytoplasmic target of cdk5. In contrast, the role of cdk5 in the nucleus is context-dependent. Following focal ischemia, nuclear cdk5 is activated and functionally relevant while there is no evidence for such activation following global ischemia. Importantly, myocyte enhancer factor 2D (MEF2D), a previously described nuclear target of cdk5 in vitro, is also phosphorylated by cdk5 following focal ischemia. In addition, MEF2D expression in this paradigm ameliorates death. Together, our results address the critical issue of cdk5 activity compartmentalization, as well as define critical substrates for both cytoplasmic and nuclear cdk5 activity in adult models of stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoplasma/metabolismo , Peroxirredoxinas/metabolismo , Animales , Isquemia Encefálica/etiología , Muerte Celular/fisiología , Células Cultivadas , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Ratas , Ratas Wistar , Accidente Cerebrovascular/complicaciones
13.
Cell Death Dis ; 10(2): 135, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755590

RESUMEN

The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Muerte Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteína Desglicasa DJ-1/metabolismo , Respuesta de Proteína Desplegada , Regulación hacia Arriba , Factor de Transcripción Activador 4/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Fibroblastos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Estrés Oxidativo/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , ARN Mensajero/metabolismo
14.
J Neurosci ; 24(12): 2963-73, 2004 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15044535

RESUMEN

Previous studies have shown that DNA damage-evoked death of primary cortical neurons occurs in a p53 and cyclin-dependent kinase-dependent (CDK) manner. The manner by which these signals modulate death is unclear. Nuclear factor-kappaB (NF-kappaB) is a group of transcription factors that potentially interact with these pathways. Presently, we show that NF-kappaB is activated shortly after induction of DNA damage in a manner independent of the classic IkappaB kinase (IKK) activation pathway, CDKs, ATM, and p53. Acute inhibition of NF-kappaB via expression of a stable IkappaB mutant, downregulation of the p65 NF-kappaB subunit by RNA interference (RNAi), or pharmacological NF-kappaB inhibitors significantly protected against DNA damage-induced neuronal death. NF-kappaB inhibition also reduced p53 transcripts and p53 activity as measured by the p53-inducible messages, Puma and Noxa, implicating the p53 tumor suppressor in the mechanism of NF-kappaB-mediated neuronal death. Importantly, p53 expression still induces death in the presence of NF-kappaB inhibition, indicating that p53 acts downstream of NF-kappaB. Interestingly, neurons cultured from p65 or p50 NF-kappaB-deficient mice were not resistant to death and did not show diminished p53 activity, suggesting compensatory processes attributable to germline deficiencies, which allow p53 activation still to occur. In contrast to acute NF-kappaB inhibition, prolonged NF-kappaB inhibition caused neuronal death in the absence of DNA damage. These results uniquely define a signaling paradigm by which NF-kappaB serves both an acute p53-dependent pro-apoptotic function in the presence of DNA damage and an anti-apoptotic function in untreated normal neurons.


Asunto(s)
Daño del ADN/fisiología , FN-kappa B/metabolismo , Neuronas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Camptotecina/farmacología , Proteínas de Ciclo Celular , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Ratones , Ratones Noqueados , Inhibidor NF-kappaB alfa , FN-kappa B/genética , Subunidad p50 de NF-kappa B , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Inhibidores de Topoisomerasa I , Factor de Transcripción ReIA , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor
15.
J Neurosci ; 23(10): 4081-91, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12764095

RESUMEN

The molecular mechanisms mediating degeneration of midbrain dopamine neurons in Parkinson's disease (PD) are poorly understood. Here, we provide evidence to support a role for the involvement of the calcium-dependent proteases, calpains, in the loss of dopamine neurons in a mouse model of PD. We show that administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes an increase in calpain-mediated proteolysis in nigral dopamine neurons in vivo. Inhibition of calpain proteolysis using either a calpain inhibitor (MDL-28170) or adenovirus-mediated overexpression of the endogenous calpain inhibitor protein, calpastatin, significantly attenuated MPTP-induced loss of nigral dopamine neurons. Commensurate with this neuroprotection, MPTP-induced locomotor deficits were abolished, and markers of striatal postsynaptic activity were normalized in calpain inhibitor-treated mice. However, behavioral improvements in MPTP-treated, calpain inhibited mice did not correlate with restored levels of striatal dopamine. These results suggest that protection against nigral neuron degeneration in PD may be sufficient to facilitate normalized locomotor activity without necessitating striatal reinnervation. Immunohistochemical analyses of postmortem midbrain tissues from human PD cases also displayed evidence of increased calpain-related proteolytic activity that was not evident in age-matched control subjects. Taken together, our findings provide a potentially novel correlation between calpain proteolytic activity in an MPTP model of PD and the etiology of neuronal loss in PD in humans.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , Conducta Animal , Calpaína/antagonistas & inhibidores , Modelos Animales de Enfermedad , Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/fisiopatología , Adenoviridae/genética , Anciano , Anciano de 80 o más Años , Animales , Conducta Animal/efectos de los fármacos , Calcio/fisiología , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/uso terapéutico , Calpaína/metabolismo , Calpaína/fisiología , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Dipéptidos/uso terapéutico , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Vectores Genéticos , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad de Parkinson/enzimología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/genética , Radioinmunoensayo/métodos , Degeneración Estriatonigral/inducido químicamente , Degeneración Estriatonigral/etiología , Degeneración Estriatonigral/prevención & control , Sustancia Negra/química , Sustancia Negra/efectos de los fármacos , Sustancia Negra/enzimología , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/inmunología , Tirosina 3-Monooxigenasa/metabolismo
16.
J Biol Chem ; 283(1): 405-415, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17984095

RESUMEN

Retinoblastoma-deficient mice show massive neuronal damage and deficits in both CNS and PNS tissue. Previous work in the field has shown that death is regulated through distinct processes where CNS tissue undergoes death regulated by the tumor suppressor p53 and the apoptosome component, APAF1. Death in the PNS, however, is independent of p53 and reliant on the death protease, caspase 3. In the present study, we more carefully delineated the common and distinct mechanisms of death regulation by examining the stress-activated kinases, JNK2 and 3, the conserved Bcl-2 member Bax, and the relationship among these elements including p53. By use of genetic modeling, we show that death in various regions of the CNS and DRGs of the PNS is reliant on Bax. In the CNS, Bax acts downstream of p53. The relevance of the JNKs is more complex, however. Surprisingly, JNK3 deficiency by itself does not inhibit c-Jun phosphorylation and instead, aggravates death in both CNS and PNS tissue. However, JNK2/3 double deficiency blocks death due to Rb loss in both the PNS and CNS. Importantly, the relationships between JNKs, p53, and Bax exhibit regional differences. In the medulla region of the hindbrain in the CNS, JNK2/3 deficiency blocks p53 activation. Moreover, Bax deficiency does not affect c-Jun phosphorylation. This indicates that a JNK-p53-Bax pathway is central in the hindbrain. However, in the diencephalon regions of the forebrain (thalamus), Bax deficiency blocks c-Jun activation, indicating that a Bax-JNK pathway of death is more relevant. In the DRGs of the PNS, a third pathway is present. In this case, a JNK-Bax pathway, independent of p53, regulates damage. Accordingly, our results show that a death regulator Bax is common to death in both PNS and CNS tissue. However, it is regulated by or itself regulates different effectors including the JNKs and p53 depending upon the specific region of the nervous system.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema Nervioso Periférico/metabolismo , Proteína de Retinoblastoma/deficiencia , Proteína X Asociada a bcl-2/metabolismo , Animales , Muerte Celular/genética , Muerte Celular/fisiología , Sistema Nervioso Central/citología , Técnica del Anticuerpo Fluorescente , Genotipo , Etiquetado Corte-Fin in Situ , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo , Sistema Nervioso Periférico/citología , Proteína de Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA