Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Annu Rev Cell Dev Biol ; 35: 111-129, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31340125

RESUMEN

Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.


Asunto(s)
Proteínas Portadoras/metabolismo , Estructuras de la Membrana Celular/química , Proteínas de la Membrana/metabolismo , Animales , Proteínas Portadoras/química , Membrana Celular/química , Membrana Celular/metabolismo , Estructuras de la Membrana Celular/metabolismo , Forma de la Célula , Humanos , Proteínas de la Membrana/química , Neoplasias/patología , Orgánulos/química , Orgánulos/metabolismo , Dominios Proteicos
2.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648660

RESUMEN

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Asunto(s)
Endocitosis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Animales , Fenómenos Biomecánicos , Fricción , Humanos , Metabolismo de los Lípidos , Dominios Proteicos , Ratas
3.
Cell ; 160(4): 659-672, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679760

RESUMEN

The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.


Asunto(s)
Mesodermo/citología , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales/citología , Fibroblastos/citología , Adhesiones Focales , Células HeLa , Humanos , Piel/citología
4.
Cell ; 160(4): 673-685, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679761

RESUMEN

3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.


Asunto(s)
Movimiento Celular , Embrión no Mamífero/citología , Gástrula/citología , Células Madre/citología , Pez Cebra/embriología , Animales , Adhesión Celular , Polaridad Celular
5.
Nature ; 590(7847): 618-623, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568811

RESUMEN

Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Células Epiteliales/citología , Fagocitos/citología , Fagocitosis , Pez Cebra/embriología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Movimiento Celular , Forma de la Célula , Extensiones de la Superficie Celular , Inmunidad Innata , Ratones , Fosfatidilserinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
6.
Nature ; 582(7813): 582-585, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581372

RESUMEN

Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Microambiente Celular , Linfocitos T/citología , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular , Humanos , Ratones , Linfocitos T/metabolismo , Talina/deficiencia
7.
Soft Matter ; 17(16): 4254-4265, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33870384

RESUMEN

Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.


Asunto(s)
Membrana Celular , Membrana Celular/metabolismo , Transporte de Proteínas
8.
Biophys J ; 117(5): 880-891, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427070

RESUMEN

Axonal beading, or the formation of a series of swellings along the axon, and retraction are commonly observed shape transformations that precede axonal atrophy in Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. The mechanisms driving these morphological transformations are poorly understood. Here, we report controlled experiments that can induce either beading or retraction and follow the time evolution of these responses. By making quantitative analysis of the shape modes under different conditions, measurement of membrane tension, and using theoretical considerations, we argue that membrane tension is the main driving force that pushes cytosol out of the axon when microtubules are degraded, causing axonal thinning. Under pharmacological perturbation, atrophy is always retrograde, and this is set by a gradient in the microtubule stability. The nature of microtubule depolymerization dictates the type of shape transformation, vis-à-vis beading or retraction. Elucidating the mechanisms of these shape transformations may facilitate development of strategies to prevent or arrest axonal atrophy due to neurodegenerative conditions.


Asunto(s)
Axones/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Atrofia , Axones/efectos de los fármacos , Fenómenos Biomecánicos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Embrión de Pollo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Imagenología Tridimensional , Membranas , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Polimerizacion , Tiazolidinas/farmacología
9.
Nat Chem Biol ; 13(7): 724-729, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28481347

RESUMEN

The targeted spatial organization (sorting) of Gprotein-coupled receptors (GPCRs) is essential for their biological function and often takes place in highly curved membrane compartments such as filopodia, endocytic pits, trafficking vesicles or endosome tubules. However, the influence of geometrical membrane curvature on GPCR sorting remains unknown. Here we used fluorescence imaging to establish a quantitative correlation between membrane curvature and sorting of three prototypic class A GPCRs (the neuropeptide Y receptor Y2, the ß1 adrenergic receptor and the ß2 adrenergic receptor) in living cells. Fitting of a thermodynamic model to the data enabled us to quantify how sorting is mediated by an energetic drive to match receptor shape and membrane curvature. Curvature-dependent sorting was regulated by ligands in a specific manner. We anticipate that this curvature-dependent biomechanical coupling mechanism contributes to the sorting, trafficking and function of transmembrane proteins in general.


Asunto(s)
Membrana Celular/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Celular/química , Imagen Óptica , Células PC12 , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Ratas , Receptores Acoplados a Proteínas G/agonistas , Termodinámica
10.
Soft Matter ; 12(6): 1791-800, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26725841

RESUMEN

We consider the hydrodynamics of lipid bilayers containing transmembrane proteins of arbitrary shape. This biologically-motivated problem is relevant to the cell membrane, whose fluctuating dynamics play a key role in phenomena ranging from cell migration, intercellular transport, and cell communication. Using Onsager's variational principle, we derive the equations that govern the relaxation dynamics of the membrane shape, of the mass densities of the bilayer leaflets, and of the diffusing proteins' concentration. With our generic formalism, we obtain several results on membrane dynamics. We find that proteins that span the bilayer increase the intermonolayer friction coefficient. The renormalization, which can be significant, is in inverse proportion to the protein's mobility. Second, we find that asymmetric proteins couple to the membrane curvature and to the difference in monolayer densities. For practically all accessible membrane tensions (σ > 10(-8) N m(-1)) we show that the protein density is the slowest relaxing variable. Furthermore, its relaxation rate decreases at small wavelengths due to the coupling to curvature. We apply our formalism to the large-scale diffusion of a concentrated protein patch. We find that the diffusion profile is not self-similar, owing to the wavevector dependence of the effective diffusion coefficient.


Asunto(s)
Hidrodinámica , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Modelos Teóricos , Difusión , Resistencia a la Tracción
11.
Proc Natl Acad Sci U S A ; 109(1): 173-8, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22184226

RESUMEN

Cells are populated by a vast array of membrane-binding proteins that execute critical functions. Functions, like signaling and intracellular transport, require the abilities to bind to highly curved membranes and to trigger membrane deformation. Among these proteins is amphiphysin 1, implicated in clathrin-mediated endocytosis. It contains a Bin-Amphiphysin-Rvs membrane-binding domain with an N-terminal amphipathic helix that senses and generates membrane curvature. However, an understanding of the parameters distinguishing these two functions is missing. By pulling a highly curved nanotube of controlled radius from a giant vesicle in a solution containing amphiphysin, we observed that the action of the protein depends directly on its density on the membrane. At low densities of protein on the nearly flat vesicle, the distribution of proteins and the mechanical effects induced are described by a model based on spontaneous curvature induction. The tube radius and force are modified by protein binding but still depend on membrane tension. In the dilute limit, when practically no proteins were present on the vesicle, no mechanical effects were detected, but strong protein enrichment proportional to curvature was seen on the tube. At high densities, the radius is independent of tension and vesicle protein density, resulting from the formation of a scaffold around the tube. As a consequence, the scaling of the force with tension is modified. For the entire density range, protein was enriched on the tube as compared to the vesicle. Our approach shows that the strength of curvature sensing and mechanical effects on the tube depends on the protein density.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Liposomas Unilamelares/metabolismo
12.
Nat Phys ; 20(2): 310-321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370025

RESUMEN

Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole-a protuberance of the zygote's vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces.

13.
Biophys J ; 103(12): 2475-83, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23260049

RESUMEN

Precisely how malaria parasites exit from infected red blood cells to further spread the disease remains poorly understood. It has been shown recently, however, that these parasites exploit the elasticity of the cell membrane to enable their egress. Based on this work, showing that parasites modify the membrane's spontaneous curvature, initiating pore opening and outward membrane curling, we develop a model of the dynamics of the red blood cell membrane leading to complete parasite egress. As a result of the three-dimensional, axisymmetric nature of the problem, we find that the membrane dynamics involve two modes of elastic-energy release: 1), at short times after pore opening, the free edge of the membrane curls into a toroidal rim attached to a membrane cap of roughly fixed radius; and 2), at longer times, the rim radius is fixed, and lipids in the cap flow into the rim. We compare our model with the experimental data of Abkarian and co-workers and obtain an estimate of the induced spontaneous curvature and the membrane viscosity, which control the timescale of parasite release. Finally, eversion of the membrane cap, which liberates the remaining parasites, is driven by the spontaneous curvature and is found to be associated with a breaking of the axisymmetry of the membrane.


Asunto(s)
Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Malaria/parasitología , Modelos Biológicos , Plasmodium falciparum/crecimiento & desarrollo , Fenómenos Biomecánicos , Merozoítos/crecimiento & desarrollo , Merozoítos/fisiología , Plasmodium falciparum/fisiología
14.
Traffic ; 11(12): 1519-29, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20887377

RESUMEN

To maintain cell membrane homeostasis, lipids must be dynamically redistributed during the formation of transport intermediates, but the mechanisms driving lipid sorting are not yet fully understood. Lowering sphingolipid concentration can reduce the bending energy of a membrane, and this effect could account for sphingolipid depletion along the retrograde pathway. However, sphingolipids and cholesterol are enriched along the anterograde pathway, implying that other lipid sorting mechanisms, such as protein-mediated sorting, can dominate. To characterize the influence of protein binding on the lipid composition of highly curved membranes, we studied the interactions of the B-subunit of Shiga toxin (STxB) with giant unilamellar vesicles containing its glycosphingolipid receptor [globotriaosylceramide (Gb3)]. STxB binding induced the formation of tubular membrane invaginations, and fluorescence microscopy images of these highly curved membranes were consistent with co-enrichment of Gb3 and sphingolipids. In agreement with theory, sorting was stronger for membrane compositions close to demixing. These results strongly support the hypothesis that proteins can indirectly mediate the sorting of lipids into highly curved transport intermediates via interactions between lipids and the membrane receptor of the protein.


Asunto(s)
Membrana Celular/metabolismo , Metabolismo de los Lípidos , Toxina Shiga/metabolismo , Esfingolípidos/metabolismo , Trihexosilceramidas/metabolismo , Animales , Transporte Biológico , Membrana Celular/química , Humanos , Unión Proteica , Toxina Shiga/química , Esfingolípidos/química , Trihexosilceramidas/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(14): 5622-6, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19304798

RESUMEN

Sorting of lipids and proteins is a key process allowing eukaryotic cells to execute efficient and accurate intracellular transport and to maintain membrane homeostasis. It occurs during the formation of highly curved transport intermediates that shuttle between cell compartments. Protein sorting is reasonably well described, but lipid sorting is much less understood. Lipid sorting has been proposed to be mediated by a physical mechanism based on the coupling between membrane composition and high curvature of the transport intermediates. To test this hypothesis, we have performed a combination of fluorescence and force measurements on membrane tubes of controlled diameters pulled from giant unilamellar vesicles. A model based on membrane elasticity and nonideal solution theory has also been developed to explain our results. We quantitatively show, using 2 independent approaches, that a difference in lipid composition can build up between a curved and a noncurved membrane. Importantly, and consistent with our theory, lipid sorting occurs only if the system is close to a demixing point. Remarkably, this process is amplified when even a low fraction of lipids is clustered upon cholera toxin binding. This can be explained by the reduction of the entropic penalty of lipid sorting when some lipids are bound together by the toxin. Our results show that curvature-induced lipid sorting results from the collective behavior of lipids and is even amplified in the presence of lipid-clustering proteins. In addition, they suggest a generic mechanism by which proteins can facilitate lipid segregation in vivo.


Asunto(s)
Transporte Biológico , Membrana Celular/ultraestructura , Lípidos , Liposomas
16.
Front Cell Dev Biol ; 10: 1000071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313569

RESUMEN

Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells-and some single-celled-organisms-have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.

17.
Elife ; 92020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267230

RESUMEN

Axons span extreme distances and are subject to significant stretch deformations during limb movements or sudden head movements, especially during impacts. Yet, axon biomechanics, and its relation to the ultrastructure that allows axons to withstand mechanical stress, is poorly understood. Using a custom developed force apparatus, we demonstrate that chick dorsal root ganglion axons exhibit a tension buffering or strain-softening response, where its steady state elastic modulus decreases with increasing strain. We then explore the contributions from the various cytoskeletal components of the axon to show that the recently discovered membrane-associated actin-spectrin scaffold plays a prominent mechanical role. Finally, using a theoretical model, we argue that the actin-spectrin skeleton acts as an axonal tension buffer by reversibly unfolding repeat domains of the spectrin tetramers to release excess mechanical stress. Our results revise the current viewpoint that microtubules and their associated proteins are the only significant load-bearing elements in axons.


Asunto(s)
Actinas/fisiología , Axones/fisiología , Espectrina/fisiología , Animales , Fenómenos Biomecánicos , Células Cultivadas , Pollos , Microtúbulos/fisiología , Pliegue de Proteína , Espectrina/química , Estrés Mecánico
18.
Phys Rev E ; 99(1-1): 012412, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30780372

RESUMEN

A general trait of living cells is their ability to exert contractile stresses on their surroundings and thus respond to substrate rigidity. At the cellular scale, this response affects cell shape, polarity, and ultimately migration. The regulation of cell shape together with rigidity sensing remains largely unknown. In this article we show that both substrate rigidity and cell shape contribute to drive actin organization and cell polarity. Increasing substrate rigidity affects bulk properties of the actin cytoskeleton by favoring long-lived actin stress fibers with increased nematic interactions, whereas cell shape imposes a local alignment of actin fibers at the cell periphery.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Forma de la Célula , Fenómenos Mecánicos , Modelos Biológicos , Fenómenos Biomecánicos , Adhesión Celular
19.
Nat Phys ; 15: 393-402, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30984281

RESUMEN

Cell migration over heterogeneous substrates during wound healing or morphogenetic processes leads to shape changes driven by different organizations of the actin cytoskeleton and by functional changes including lamellipodial protrusions and contractile actin cables. Cells distinguish between cell-sized positive and negative curvatures in their physical environment by forming protrusions at positive ones and actin cables at negative ones; however, the cellular mechanisms remain unclear. Here, we report that concave edges promote polarized actin structures with actin flow directed towards the cell edge, in contrast to well-documented retrograde flow at convex edges. Anterograde flow and contractility induce a tension anisotropy gradient. A polarized actin network is formed, accompanied by a local polymerization-depolymerization gradient, together with leading-edge contractile actin cables in the front. These cables extend onto non-adherent regions while still maintaining contact with the substrate through focal adhesions. The contraction and dynamic reorganization of this actin structure allows forward movements enabling cell migration over non-adherent regions on the substrate. These versatile functional structures may help cells sense and navigate their environment by adapting to external geometric and mechanical cues.

20.
IEEE Trans Vis Comput Graph ; 12(5): 1323-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17080868

RESUMEN

We present visualization tools for analyzing molecular simulations of liquid crystal (LC) behavior. The simulation data consists of terabytes of data describing the position and orientation of every molecule in the simulated system over time. Condensed matter physicists study the evolution of topological defects in these data, and our visualization tools focus on that goal. We first convert the discrete simulation data to a sampled version of a continuous second-order tensor field and then use combinations of visualization methods to simultaneously display combinations of contractions of the tensor data, providing an interactive environment for exploring these complicated data. The system, built using AVS, employs colored cutting planes, colored isosurfaces, and colored integral curves to display fields of tensor contractions including Westin's scalar cl, cp, and cs metrics and the principal eigenvector. Our approach has been in active use in the physics lab for over a year. It correctly displays structures already known; it displays the data in a spatially and temporally smoother way than earlier approaches, avoiding confusing grid effects and facilitating the study of multiple time steps; it extends the use of tools developed for visualizing diffusion tensor data, re-interpreting them in the context of molecular simulations; and it has answered long-standing questions regarding the orientation of molecules around defects and the conformational changes of the defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA