Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(6): 1372-1376, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946777

RESUMEN

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Red Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Ratones
2.
Cell ; 167(4): 961-972.e16, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773481

RESUMEN

Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility.


Asunto(s)
Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Memoria , Vías Nerviosas , Animales , Condicionamiento Psicológico , Fenómenos Electrofisiológicos , Miedo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Optogenética , Virus de la Rabia/genética , Sinapsis
3.
Nature ; 624(7991): 390-402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092918

RESUMEN

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Mamíferos , Neocórtex , Animales , Humanos , Ratones , Callithrix/genética , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada/genética , Metilación de ADN , Elementos Transponibles de ADN/genética , Epigenoma , Regulación de la Expresión Génica/genética , Macaca/genética , Mamíferos/genética , Corteza Motora/citología , Corteza Motora/metabolismo , Multiómica , Neocórtex/citología , Neocórtex/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Variación Genética/genética
4.
Nature ; 607(7918): 321-329, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676479

RESUMEN

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Asunto(s)
Afecto , Destreza Motora , Vías Nerviosas , Enfermedad de Parkinson , Tálamo , Animales , Modelos Animales de Enfermedad , Aprendizaje , Locomoción , Potenciación a Largo Plazo , Ratones , Neuronas/fisiología , Núcleo Accumbens , Optogenética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalámico , Sinapsis , Tálamo/citología , Tálamo/patología
5.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
6.
Nature ; 598(7879): 167-173, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616065

RESUMEN

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epigenoma , Epigenómica , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Animales , Mapeo Encefálico , Femenino , Masculino , Ratones , Neuronas/citología
8.
Proc Natl Acad Sci U S A ; 119(22): e2203677119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35609197

RESUMEN

Cortical circuit tracing using modified rabies virus can identify input neurons making direct monosynaptic connections onto neurons of interest. However, challenges remain in our ability to establish the cell type identity of rabies-labeled input neurons. While transcriptomics may offer an avenue to characterize inputs, the extent of rabies-induced transcriptional changes in distinct neuronal cell types remains unclear, and whether these changes preclude characterization of rabies-infected neurons according to established transcriptomic cell types is unknown. We used single-nucleus RNA sequencing to survey the gene expression profiles of rabies-infected neurons and assessed their correspondence with established transcriptomic cell types. We demonstrated that when using transcriptome-wide RNA profiles, rabies-infected cortical neurons can be transcriptomically characterized despite global and cell-type-specific rabies-induced transcriptional changes. Notably, we found differential modulation of neuronal marker gene expression, suggesting that caution should be taken when attempting to characterize rabies-infected cells with single genes or small gene sets.


Asunto(s)
Dermatoglifia del ADN , Neuronas , Virus de la Rabia , Rabia , Humanos , Neuronas/fisiología , Neuronas/virología , Rabia/genética , Virus de la Rabia/genética , Análisis de Secuencia de ARN , Transcripción Genética , Transcriptoma/genética
9.
Proc Natl Acad Sci U S A ; 117(23): 13066-13077, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32461374

RESUMEN

Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.


Asunto(s)
Cuerpos Geniculados/fisiología , Pulvinar/fisiología , Corteza Visual/fisiología , Animales , Estimulación Eléctrica , Electrodos Implantados , Femenino , Masculino , Ratones , Microelectrodos , Optogenética , Técnicas Estereotáxicas , Vías Visuales
10.
Emerg Radiol ; 30(5): 577-587, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37458917

RESUMEN

PURPOSE: Previous investigations into the causes of error by radiologists have addressed work schedule, volume, shift length, and sub-specialization. Studies regarding possible associations between radiologist errors and radiologist age and timing of residency training are lacking in the literature, to our knowledge. The aim of our study was to determine if radiologist age and residency graduation date is associated with diagnostic errors. METHODS: Our retrospective analysis included 1.9 million preliminary interpretations (out of a total of 5.2 million preliminary and final interpretations) of imaging examinations by 361 radiologists in a US-based national teleradiology practice between 1/1/2019 and 1/1/2020. Quality assurance data regarding the number of radiologist errors was generated through client facility feedback to the teleradiology practice. With input from both the client radiologist and the teleradiologist, the final determination of the presence, absence, and severity of a teleradiologist error was determined by the quality assurance committee of radiologists within the teleradiology company using standardized criteria. Excluded were 3.2 million final examination interpretations and 93,963 (1.8%) of total examinations from facilities reporting less than one discrepancy in examination interpretation in 2019. Logistic regression with covariates radiologist age and residency graduation date was performed for calculation of relative risk of overall error rates and by major imaging modality. Major errors were separated from minor errors as those with a greater likelihood of affecting patient care. Logistic regression with covariates radiologist age, residency graduation date, and log total examinations interpreted was used to calculate odds of making a major error to that of making a minor error. RESULTS: Mean age of the 361 radiologists was 51.1 years, with a mean residency graduation date of 2001. Mean error rate for all examinations was 0.5%. Radiologist age at any residency graduation date was positively associated with major errors (p < 0.05), with a relative risk 1.021 for each 1-year increase in age and relative risk 1.235 for each decade as well as for minor errors (p < 0.05, relative risk 1.007 for each year, relative risk 1.082 for each decade). By major imaging modality, radiologist age at any residency graduation date was positively associated with computed tomography (CT) and X-ray (XR) major and minor error, magnetic resonance imaging (MRI) major error, and ultrasound (US) minor error (p < 0.05). Radiologist age was positively associated with odds of making a major vs. minor error (p < 0.05). CONCLUSIONS: The mean error rate for all radiologists was low. We observed that increasing age at any residency graduation date was associated with increasing relative risk of major and minor errors as well as increasing odds of a major vs. minor error among providers. Further study is needed to corroborate these results, determine clinical relevance, and highlight strategies to address these findings.


Asunto(s)
Radiólogos , Tomografía Computarizada por Rayos X , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Errores Diagnósticos , Ultrasonografía
11.
Nature ; 540(7631): 144-149, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27851729

RESUMEN

Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Marcación de Gen/métodos , Genoma/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , División Celular , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Terapia Genética/métodos , Neuronas/citología , Neuronas/metabolismo , Ratas , Homología de Secuencia
12.
Proc Natl Acad Sci U S A ; 116(52): 27001-27010, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843925

RESUMEN

In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or "leak" expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant "cross-over insensitive" recognition sites combined with an "ATG-out" design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.

13.
Emerg Radiol ; 28(6): 1135-1141, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34328592

RESUMEN

PURPOSE: To evaluate the feasibility of adding pathology to recent radiologist error characterization schemes of modality and anatomic region and the potential of this data to more specifically inform peer review and peer learning. METHODS: Quality assurance data originating from 349 radiologists in a national teleradiology practice were collected for 2019. Interpretive errors were simply categorized as major or minor. Reporting or communication errors were classified as administrative errors. Interpretive errors were then divided by modality, anatomic region and placed into one of 64 pathologic categories. RESULTS: Out of 1,628,464 studies, the discrepancy rate was 0.5% (8181/1,634,201). The 8181 total errors consisted of 2992 major errors (0.18%) and 5189 minor errors (0.32%). Precisely, 3.1% (257/8181) of total errors were administrative. Of major interpretive errors, 75.5% occurred on CT, with CT abdomen and pelvis accounting for 40.4%. The most common pathologic discrepancy for all exams was in the category of mass, nodule, or adenopathy (1583/8181), the majority of which were minor (1315/1583). The most common pathologic discrepancy for the 2937 major interpretive errors was fracture or dislocation (27%; 793/2937), followed by bleed (10.7%; 315/2937). CONCLUSION: The addition of error-related pathology to peer review is both feasible and practical and provides a more detailed guide to targeted individual and practice-wide peer learning quality improvement efforts. Future research is needed to determine if there are measurable improvements in detection or interpretation of specific pathologies following error feedback and educational interventions.


Asunto(s)
Garantía de la Calidad de Atención de Salud , Telerradiología , Errores Diagnósticos , Humanos , Radiólogos , Tomografía Computarizada por Rayos X
14.
J Neurosci ; 39(1): 78-95, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30377226

RESUMEN

The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.


Asunto(s)
Dermatoglifia del ADN , Células Ganglionares de la Retina/fisiología , Vías Visuales/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Femenino , Macaca , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Ratones , Ratones Endogámicos C57BL , Percepción de Movimiento/fisiología , Primates , Conejos , Retina/fisiología , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/fisiología
15.
Nature ; 507(7492): 358-61, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24572358

RESUMEN

How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear. In mice, several different types of DSGCs connect to the dorsal lateral geniculate nucleus (dLGN), the visual thalamic structure that harbours cortical relay neurons. Whether direction-selective information computed at the level of the retina is routed to cortical circuits and integrated with other visual channels, however, is unknown. Here we show that there is a di-synaptic circuit linking DSGCs with the superficial layers of the primary visual cortex (V1) by using viral trans-synaptic circuit mapping and functional imaging of visually driven calcium signals in thalamocortical axons. This circuit pools information from several types of DSGCs, converges in a specialized subdivision of the dLGN, and delivers direction-tuned and orientation-tuned signals to superficial V1. Notably, this circuit is anatomically segregated from the retino-geniculo-cortical pathway carrying non-direction-tuned visual information to deeper layers of V1, such as layer 4. Thus, the mouse harbours several functionally specialized, parallel retino-geniculo-cortical pathways, one of which originates with retinal DSGCs and delivers direction- and orientation-tuned information specifically to the superficial layers of the primary visual cortex. These data provide evidence that direction and orientation selectivity of some V1 neurons may be influenced by the activation of DSGCs.


Asunto(s)
Vías Nerviosas/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Axones/fisiología , Señalización del Calcio , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Células HEK293 , Humanos , Ratones , Orientación/fisiología , Virus de la Rabia/genética , Virus de la Rabia/fisiología , Tálamo/citología , Tálamo/fisiología
16.
Nature ; 551(7679): 172-173, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120413

Asunto(s)
Encéfalo , Neuronas , Humanos
17.
J Neurosci ; 36(28): 7535-45, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413162

RESUMEN

UNLABELLED: Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT: Principles of anatomical organization, sometimes instantiated as "maps" in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the olfactory bulb that is fundamentally different from the organization of feedforward circuits. Our study suggests that understanding computations performed in the olfactory bulb, and more generally in the olfactory system, requires understanding interactions between feedforward and feedback "maps" both structurally and functionally.


Asunto(s)
Mapeo Encefálico , Bulbo Olfatorio/citología , Corteza Olfatoria/fisiología , Vías Olfatorias/fisiología , Células Receptoras Sensoriales/fisiología , Olfato , Animales , Análisis por Conglomerados , Lateralidad Funcional , Glicoproteínas/metabolismo , Imagenología Tridimensional , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/diagnóstico por imagen , Corteza Olfatoria/diagnóstico por imagen , Vías Olfatorias/diagnóstico por imagen , Transducción Genética
18.
J Neurosci ; 36(14): 4000-9, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053207

RESUMEN

Cortical inhibition is mediated by diverse inhibitory neuron types that can each play distinct roles in information processing by virtue of differences in their input sources, intrinsic properties, and innervation targets. Previous studies in brain slices have demonstrated considerable cell-type specificity in laminar sources of local inputs. In contrast, little is known about possible differences in distant inputs to different cortical interneuron types. We used the monosynaptic rabies virus system, in conjunction with mice expressing Cre recombinase in either parvalbumin-positive, somatostatin-positive (SST+), or vasoactive intestinal peptide-positive (VIP+) neurons, to map the brain-wide input to the three major nonoverlapping classes of interneurons in mouse somatosensory cortex. We discovered that all three classes of interneurons received considerable input from known cortical and thalamic input sources, as well as from probable cholinergic cells in the basal nucleus of Meynert. Despite their common input sources, these classes differed in the proportion of long-distance cortical inputs originating from deep versus superficial layers. Similar to their laminar differences in local input, VIP+ neurons received inputs predominantly from deep layers while SST+ neurons received mostly superficial inputs. These classes also differed in the amount of input they received. Cortical and thalamic inputs were greatest onto VIP+ interneurons and smallest onto SST+ neurons. SIGNIFICANCE STATEMENT: These results indicate that all three major interneuron classes in the barrel cortex integrate both feedforward and feedback information from throughout the brain to modulate the activity of the local cortical circuit. However, differences in laminar sources and magnitude of distant cortical input suggest differential contributions from cortical areas. More input to vasoactive intestinal peptide-positive (VIP+) neurons than to somatostatin-positive (SST+) neurons suggests that disinhibition of the cortex via VIP+ cells, which inhibit SST+ cells, might be a general feature of long-distance corticocortical and thalamocortical circuits.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Interneuronas/fisiología , Sinapsis/fisiología , Animales , Núcleo Basal de Meynert/citología , Núcleo Basal de Meynert/fisiología , Corteza Cerebral/citología , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/fisiología , Virus de la Rabia/genética , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Somatostatina/metabolismo , Tálamo/citología , Tálamo/fisiología , Péptido Intestinal Vasoactivo/metabolismo
19.
Nature ; 472(7342): 191-6, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21179085

RESUMEN

In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of 'starter' cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.


Asunto(s)
Técnicas de Trazados de Vías Neuroanatómicas , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Sinapsis/metabolismo , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Axones/fisiología , Sesgo , Mapeo Encefálico , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Odorantes/análisis , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Vías Olfatorias/anatomía & histología , Percepción Olfatoria/genética , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Virus de la Rabia/fisiología , Sinapsis/genética
20.
Cereb Cortex ; 26(3): 991-1003, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25405939

RESUMEN

Pyramidal neurons in layer 5 of the neocortex can be differentiated into 3 cell subtypes: 1) short regular spiking (SH), 2) tall regular spiking (TR), and 3) tall burst spiking (TB), based on their morphological and electrophysiological properties. We characterized the functional excitatory local input to these 3 cell subtypes in rat primary visual cortex using laser-scanning photostimulation. Although all cell types received significant input from all cortical layers, SH neurons received stronger input from layer 4 and weaker input from layer 5 than did tall pyramidal cells. However, the laminar input to the 2 populations of tall pyramidal cells was indistinguishable. Simultaneous paired recording were then used to calculate a correlation probability (CP) to infer the proportion of shared input based on the occurrence of simultaneous synaptic potentials. Tall pairs of matched type had significantly higher CPs compared with unmatched pairs, suggesting that subpopulations of layer 4, 5, and 6 neurons preferentially connect to each tall cell type. Hence, this study shows that unconnected but matching pairs of tall pyramidal neurons, but not short pyramidal neurons, receive functional input from different interconnected networks within layers 4, 5, and 6.


Asunto(s)
Células Piramidales/fisiología , Corteza Visual/fisiología , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Placa-Clamp , Probabilidad , Células Piramidales/citología , Ratas Long-Evans , Técnicas de Cultivo de Tejidos , Corteza Visual/citología , Vías Visuales/citología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA