Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(10): 2265-2282, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39293448

RESUMEN

Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.


Asunto(s)
Glaucoma , Miopía , Factor de Crecimiento Transformador beta2 , Animales , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Ratones , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Miopía/genética , Miopía/metabolismo , Humanos , Iris/metabolismo , Iris/patología , Iris/anomalías , Presión Intraocular
2.
Am J Med Genet A ; 194(9): e63655, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38711238

RESUMEN

The association of early-onset non-progressive ataxia and miosis is an extremely rare phenotypic entity occasionally reported in the literature. To date, only one family (two siblings and their mother) has benefited from a genetic diagnosis by the identification of a missense heterozygous variant (p.Arg36Cys) in the ITPR1 gene. This gene encodes the inositol 1,4,5-trisphosphate receptor type 1, an intracellular channel that mediates calcium release from the endoplasmic reticulum. Deleterious variants in this gene are known to be associated with two types of spinocerebellar ataxia, SCA15 and SCA29, and with Gillespie syndrome that is associated with ataxia, partial iris hypoplasia, and intellectual disability. In this work, we describe a novel individual carrying a heterozygous missense variant (p.Arg36Pro) at the same position in the N-terminal suppressor domain of ITPR1 as the family previously reported, with the same phenotype associating early-onset non-progressive ataxia and miosis. This second report confirms the implication of ITPR1 in the miosis-ataxia syndrome and therefore broadens the clinical spectrum of the gene. Moreover, the high specificity of the phenotype makes it a recognizable syndrome of genetic origin.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato , Miosis , Femenino , Humanos , Ataxia/genética , Ataxia/patología , Heterocigoto , Receptores de Inositol 1,4,5-Trifosfato/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Miosis/genética , Miosis/patología , Mutación Missense/genética , Linaje , Fenotipo , Anciano
3.
J Med Genet ; 60(3): 294-300, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35790350

RESUMEN

BACKGROUND: Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia and Cardiac defects delineate the PDAC syndrome. We aim to identify the cause of PDAC syndrome in patients who do not carry pathogenic variants in RARB and STRA6, which have been previously associated with this disorder. METHODS: We sequenced the exome of patients with unexplained PDAC syndrome and performed functional validation of candidate variants. RESULTS: We identified bi-allelic variants in WNT7B in fetuses with PDAC syndrome from two unrelated families. In one family, the fetus was homozygous for the c.292C>T (p.(Arg98*)) variant whereas the fetuses from the other family were compound heterozygous for the variants c.225C>G (p.(Tyr75*)) and c.562G>A (p.(Gly188Ser)). Finally, a molecular autopsy by proxy in a consanguineous couple that lost two babies due to lung hypoplasia revealed that both parents carry the p.(Arg98*) variant. Using a WNT signalling canonical luciferase assay, we demonstrated that the identified variants are deleterious. In addition, we found that wnt7bb mutant zebrafish display a defect of the swimbladder, an air-filled organ that is a structural homolog of the mammalian lung, suggesting that the function of WNT7B has been conserved during evolution for the development of these structures. CONCLUSION: Our findings indicate that defective WNT7B function underlies a form of lung hypoplasia that is associated with the PDAC syndrome, and provide evidence for involvement of the WNT-ß-catenin pathway in human lung, tracheal, ocular, cardiac, and renal development.


Asunto(s)
Pulmón , Pez Cebra , Animales , Humanos , Pulmón/patología , Secuencia de Bases , Vía de Señalización Wnt , Exoma , Mamíferos/metabolismo , Proteínas Wnt/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473917

RESUMEN

Ocular malformations (OMs) arise from early defects during embryonic eye development. Despite the identification of over 100 genes linked to this heterogeneous group of disorders, the genetic cause remains unknown for half of the individuals following Whole-Exome Sequencing. Diagnosis procedures are further hampered by the difficulty of studying samples from clinically relevant tissue, which is one of the main obstacles in OMs. Whole-Genome Sequencing (WGS) to screen for non-coding regions and structural variants may unveil new diagnoses for OM individuals. In this study, we report a patient exhibiting a syndromic OM with a de novo 3.15 Mb inversion in the 6p25 region identified by WGS. This balanced structural variant was located 100 kb away from the FOXC1 gene, previously associated with ocular defects in the literature. We hypothesized that the inversion disrupts the topologically associating domain of FOXC1 and impairs the expression of the gene. Using a new type of samples to study transcripts, we were able to show that the patient presented monoallelic expression of FOXC1 in conjunctival cells, consistent with the abolition of the expression of the inverted allele. This report underscores the importance of investigating structural variants, even in non-coding regions, in individuals affected by ocular malformations.


Asunto(s)
Anomalías del Ojo , Microftalmía , Humanos , Factores de Transcripción/genética , Microftalmía/genética , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/genética , Alelos , Factores de Transcripción Forkhead/genética , Mutación
5.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
6.
J Med Genet ; 59(5): 428-437, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33782094

RESUMEN

BACKGROUND: The paired-domain transcription factor paired box gene 6 (PAX6) causes a wide spectrum of ocular developmental anomalies, including congenital aniridia, Peters anomaly and microphthalmia. Here, we aimed to functionally assess the involvement of seven potentially non-canonical splicing variants on missplicing of exon 6, which represents the main hotspot region for loss-of-function PAX6 variants. METHODS: By locus-specific analysis of PAX6 using Sanger and/or targeted next-generation sequencing, we screened a Spanish cohort of 106 patients with PAX6-related diseases. Functional splicing assays were performed by in vitro minigene approaches or directly in RNA from patient-derived lymphocytes cell line, when available. RESULTS: Five out seven variants, including three synonymous changes, one small exonic deletion and one non-canonical splice variant, showed anomalous splicing patterns yielding partial exon skipping and/or elongation. CONCLUSION: We describe new spliceogenic mechanisms for PAX6 variants mediated by creating or strengthening five different cryptic donor sites at exon 6. Our work revealed that the activation of cryptic PAX6 splicing sites seems to be a recurrent and underestimated cause of aniridia. Our findings pointed out the importance of functional assessment of apparently silent PAX6 variants to uncover hidden genetic alterations and to improve variant interpretation for genetic counselling in aniridia.


Asunto(s)
Aniridia , Anomalías del Ojo , Aniridia/genética , Anomalías del Ojo/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Humanos , Mutación/genética , Factor de Transcripción PAX6/genética , Linaje , Sitios de Empalme de ARN/genética
7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675087

RESUMEN

PAX6 haploinsufficiency causes aniridia, a congenital eye disorder that involves the iris, and foveal hypoplasia. Comprehensive screening of the PAX6 locus, including the non-coding regions, by next-generation sequencing revealed four deep-intronic variants with potential effects on pre-RNA splicing. Nevertheless, without a functional analysis, their pathogenicity could not be established. We aimed to decipher their impact on the canonical PAX6 splicing using in vitro minigene splicing assays and nanopore-based long-read sequencing. Two multi-exonic PAX6 constructs were generated, and minigene assays were carried out. An aberrant splicing pattern was observed for two variants in intron 6, c.357+136G>A and c.357+334G>A. In both cases, several exonization events, such as pseudoexon inclusions and partial intronic retention, were observed due to the creation or activation of new/cryptic non-canonical splicing sites, including a shared intronic donor site. In contrast, two variants identified in intron 11, c.1032+170A>T and c.1033-275A>C, seemed not to affect splicing processes. We confirmed the high complexity of alternative splicing of PAX6 exon 6, which also involves unreported cryptic intronic sites. Our study highlights the importance of integrating functional studies into diagnostic algorithms to decipher the potential implication of non-coding variants, usually classified as variants of unknown significance, thus allowing variant reclassification to achieve a conclusive genetic diagnosis.


Asunto(s)
Aniridia , Empalme del ARN , Humanos , Empalme Alternativo/genética , Aniridia/genética , Intrones/genética , Mutación , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Sitios de Empalme de ARN , Empalme del ARN/genética
8.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402090

RESUMEN

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Asunto(s)
Encéfalo/anomalías , Anomalías del Ojo/genética , Dedos/anomalías , Mutación Missense , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Proteínas con Repetición de beta-Transducina/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino
9.
Clin Genet ; 101(5-6): 494-506, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170016

RESUMEN

Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.


Asunto(s)
Opacidad de la Córnea , Anomalías del Ojo , Segmento Anterior del Ojo/anomalías , Hibridación Genómica Comparativa , Opacidad de la Córnea/diagnóstico , Opacidad de la Córnea/genética , Opacidad de la Córnea/patología , Variaciones en el Número de Copia de ADN/genética , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Humanos , Mutación/genética , Factores de Transcripción SOXB1/genética
10.
Neurol Sci ; 43(11): 6517-6527, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35925454

RESUMEN

AB variant is the rarest form of GM2 gangliosidosis, neurodegenerative diseases caused by lysosomal accumulation of GM2 gangliosides. Less than thirty cases are referenced in the literature, and to date, no late-onset form has been described. Our proband is a 22-year-old male with spinocerebellar ataxia and lower limbs motor deficiency. His symptoms started at the age of 10. A genetic analysis revealed two mutations in the GM2A gene encoding the GM2 activator protein (GM2-AP), an essential co-factor of hexosaminidase A. Both mutations, GM2A:c.79A > T:p.Lys27* and GM2A:c.415C > T:p.Pro139Ser, were inherited respectively from his father and his mother. The nonsense mutation was predicted to be likely pathogenic, but the missense mutation was of unknown significance. To establish the pathogenicity of this variant, we studied GM2 accumulation and GM2A gene expression. Electron microscopy and immunofluorescence performed on patient's fibroblasts did not reveal any lysosomal accumulation of GM2. There was also no difference in GM2A gene expression using RT-qPCR, and both mutations were found on cDNA Sanger sequencing. Measurement of plasma gangliosides by liquid-phase chromatography-tandem mass spectrometry showed an accumulation of GM2 in our patient's plasma at 83.5 nmol/L, and a GM2/GM3 ratio at 0.066 (median of negative control at 30.2 nmol/L [19.7-46.8] and 0.019 respectively). Therefore, the association of both p.Lys27* and p.Pro169Ser mutations leads to a GM2-AP functional deficiency. Whereas the first mutation is more likely to be linked with infantile form of GM2 gangliosidosis, the hypomorphic p.Pro169Ser variant may be the first associated with a late-onset form of AB variant.


Asunto(s)
Gangliosidosis GM2 , Humanos , Masculino , Adulto Joven , Proteína Activadora de G (M2)/genética , Gangliósido G(M2)/metabolismo , Gangliósidos , Gangliosidosis GM2/genética , Mutación/genética
11.
Genet Med ; 22(3): 598-609, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31700164

RESUMEN

PURPOSE: Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS: We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS: Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION: Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.


Asunto(s)
Anomalías del Ojo/genética , Predisposición Genética a la Enfermedad , Microftalmía/genética , Factor de Transcripción PAX6/genética , Adolescente , Adulto , Sitios de Unión/genética , Niño , Preescolar , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Anomalías del Ojo/patología , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Microftalmía/patología , Mutación Missense/genética , Linaje , Adulto Joven
12.
J Hum Genet ; 65(5): 487-491, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32015378

RESUMEN

Microphthalmia, anophthalmia, and anterior segment dysgenesis are severe ocular developmental defects. There is a wide genetic heterogeneity leading to these ocular malformations. By using whole genome, exome and targeted sequencing in patients with ocular developmental anomalies, six biallelic pathogenic variants (including five novel variants) were identified in the PXDN gene in four families with microphthalmia and anterior segment dysgenesis. Only 11 different mutations (11 families) have been described in this gene to date. The phenotype of these patients is variable in severity, ranging from cataract and developmental glaucoma to complex microphthalmia. Interestingly, two unrelated patients of our series presented with an ocular phenotype including aniridia and microspherophakia. However, despite various phenotypic presentations and types of mutations, no genotype-phenotype correlation could be made. Thus, this work improves our knowledge of the recessive phenotype associated with biallelic variants in this gene and highlights the importance of screening PXDN in patients with anterior segment dysgenesis with or without microphthalmia.


Asunto(s)
Alelos , Anomalías del Ojo/genética , Microftalmía/genética , Mutación , Peroxidasas/genética , Anomalías del Ojo/patología , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Microftalmía/patología
13.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32452540

RESUMEN

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Asunto(s)
Variación Genética/genética , Hernia Diafragmática/diagnóstico por imagen , Hernia Diafragmática/genética , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/genética , Proteínas de la Membrana/genética , Adulto , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Electroencefalografía/métodos , Facies , Hernia Diafragmática/fisiopatología , Humanos , Recién Nacido , Deformidades Congénitas de las Extremidades/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino
14.
Hum Mutat ; 40(10): 1713-1730, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31050087

RESUMEN

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Empalme Alternativo , Ciclo Celular , Línea Celular , Análisis Mutacional de ADN , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Mutación , Fenotipo
15.
Hum Genet ; 138(8-9): 1051-1069, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29974297

RESUMEN

Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia ('Lenz'-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome ('Lenz') usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome.


Asunto(s)
Anomalías Múltiples/genética , Catarata/congénito , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Defectos de los Tabiques Cardíacos/genética , Microftalmía/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Adolescente , Adulto , Catarata/genética , Preescolar , Anomalías del Ojo/genética , Femenino , Variación Genética/genética , Heterocigoto , Humanos , Lactante , Masculino , Fenotipo , Síndrome , Inactivación del Cromosoma X/genética , Adulto Joven
16.
Hum Genet ; 138(8-9): 1027-1042, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29464339

RESUMEN

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.


Asunto(s)
Conexinas/genética , Anomalías del Ojo/genética , Mutación Missense/genética , Catarata/genética , Estudios de Cohortes , Proteínas del Ojo/genética , Femenino , Uniones Comunicantes/genética , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Cristalino/patología , Masculino , Linaje , Fenotipo
17.
Am J Hum Genet ; 98(5): 971-980, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108797

RESUMEN

Gillespie syndrome (GS) is a rare variant form of aniridia characterized by non-progressive cerebellar ataxia, intellectual disability, and iris hypoplasia. Unlike the more common dominant and sporadic forms of aniridia, there has been no significant association with PAX6 mutations in individuals with GS and the mode of inheritance of the disease had long been regarded as uncertain. Using a combination of trio-based whole-exome sequencing and Sanger sequencing in five simplex GS-affected families, we found homozygous or compound heterozygous truncating mutations (c.4672C>T [p.Gln1558(∗)], c.2182C>T [p.Arg728(∗)], c.6366+3A>T [p.Gly2102Valfs5(∗)], and c.6664+5G>T [p.Ala2221Valfs23(∗)]) and de novo heterozygous mutations (c.7687_7689del [p.Lys2563del] and c.7659T>G [p.Phe2553Leu]) in the inositol 1,4,5-trisphosphate receptor type 1 gene (ITPR1). ITPR1 encodes one of the three members of the IP3-receptors family that form Ca(2+) release channels localized predominantly in membranes of endoplasmic reticulum Ca(2+) stores. The truncation mutants, which encompass the IP3-binding domain and varying lengths of the modulatory domain, did not form functional channels when produced in a heterologous cell system. Furthermore, ITPR1 p.Lys2563del mutant did not form IP3-induced Ca(2+) channels but exerted a negative effect when co-produced with wild-type ITPR1 channel activity. In total, these results demonstrate biallelic and monoallelic ITPR1 mutations as the underlying genetic defects for Gillespie syndrome, further extending the spectrum of ITPR1-related diseases.


Asunto(s)
Aniridia/etiología , Ataxia Cerebelosa/etiología , Genes Dominantes/genética , Genes Recesivos/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Discapacidad Intelectual/etiología , Mutación/genética , Adolescente , Aniridia/patología , Ataxia Cerebelosa/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Linaje
18.
Genome Res ; 26(4): 474-85, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26893459

RESUMEN

Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.


Asunto(s)
Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Receptor Patched-1/genética , Factores de Transcripción SOXB1/metabolismo , Alelos , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Sitios Genéticos , Heterocigoto , Humanos , Mutación , Receptor Patched-1/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Pez Cebra
19.
Am J Hum Genet ; 96(4): 631-9, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25772937

RESUMEN

Congenital microcoria (MCOR) is a rare autosomal-dominant disorder characterized by inability of the iris to dilate owing to absence of dilator pupillae muscle. So far, a dozen MCOR-affected families have been reported worldwide. By using whole-genome oligonucleotide array CGH, we have identified deletions at 13q32.1 segregating with MCOR in six families originating from France, Japan, and Mexico. Breakpoint sequence analyses showed nonrecurrent deletions in 5/6 families. The deletions varied from 35 kbp to 80 kbp in size, but invariably encompassed or interrupted only two genes: TGDS encoding the TDP-glucose 4,6-dehydratase and GPR180 encoding the G protein-coupled receptor 180, also known as intimal thickness-related receptor (ITR). Unlike TGDS which has no known function in muscle cells, GPR180 is involved in the regulation of smooth muscle cell growth. The identification of a null GPR180 mutation segregating over two generations with iridocorneal angle dysgenesis, which can be regarded as a MCOR endophenotype, is consistent with the view that deletions of this gene, with or without the loss of elements regulating the expression of neighboring genes, are the cause of MCOR.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 13/genética , Trastornos de la Pupila/congénito , Receptores de Superficie Celular/genética , Secuencia de Bases , Hibridación Genómica Comparativa , Componentes del Gen , Genes Dominantes/genética , Humanos , Hidroliasas/genética , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Trastornos de la Pupila/genética , Trastornos de la Pupila/patología , Receptores Acoplados a Proteínas G , Análisis de Secuencia de ADN
20.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27528516

RESUMEN

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Asunto(s)
Ataxia Cerebelosa/genética , Variaciones en el Número de Copia de ADN , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Edad de Inicio , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas Portadoras/genética , Ataxia Cerebelosa/etiología , Niño , Preescolar , Proteínas de Unión al ADN/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteína Niemann-Pick C1 , Proteína-2 Multifuncional Peroxisomal/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA