Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(9): e1009840, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499689

RESUMEN

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Animales , Biomarcadores , Línea Celular , Chlorocebus aethiops , Hepatocitos/virología , Humanos , Luciferasas/farmacología , Nanoestructuras , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos
2.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766096

RESUMEN

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

3.
Patterns (N Y) ; 4(8): 100800, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602209

RESUMEN

We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.

4.
bioRxiv ; 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33564760

RESUMEN

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, vaccine escape variants might arise leading to a re-emergence of COVID. In anticipation of such a scenario, the identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2- DOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in- line with reported proteinuria and liver damage in patients with COVID-19. We identified 35 drugs that reduced viral replication in Vero and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.

5.
Cells ; 9(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927811

RESUMEN

The ability to quantitate a protein of interest temporally and spatially at subcellular resolution in living cells would generate new opportunities for research and drug discovery, but remains a major technical challenge. Here, we describe dynamic, high-sensitivity protein quantitation technique using NanoLuciferase (NLuc) tagging, which is effective across microscopy and multiwell platforms. Using collagen as a test protein, the CRISPR-Cas9-mediated introduction of nluc (encoding NLuc) into the Col1a2 locus enabled the simplification and miniaturisation of procollagen-I (PC-I) quantitation. Collagen was chosen because of the clinical interest in its dysregulation in cardiovascular and musculoskeletal disorders, and in fibrosis, which is a confounding factor in 45% of deaths, including those brought about by cancer. Collagen is also the cargo protein of choice for studying protein secretion because of its unusual shape and size. However, the use of overexpression promoters (which drowns out endogenous regulatory mechanisms) is often needed to achieve good signal/noise ratios in fluorescence microscopy of tagged collagen. We show that endogenous knock-in of NLuc, combined with its high brightness, negates the need to use exogenous promoters, preserves the circadian regulation of collagen synthesis and the responsiveness to TGF-ß, and enables time-lapse microscopy of intracellular transport compartments containing procollagen cargo. In conclusion, we demonstrate the utility of CRISPR-Cas9-mediated endogenous NLuc tagging to robustly quantitate extracellular, intracellular, and subcellular protein levels and localisation.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo I , Animales , Colágeno Tipo I/análisis , Colágeno Tipo I/metabolismo , Luminiscencia , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA