Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(44): 22037-22043, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31619567

RESUMEN

Organic photovoltaics (OPVs) have attracted tremendous attention in the field of thin-film solar cells due to their wide range of applications, especially for semitransparent devices. Here, we synthesize a dithiaindacenone-thiophene-benzothiadiazole-thiophene alternating donor copolymer named poly{[2,7-(5,5-didecyl-5H-1,8-dithia-as-indacenone)]-alt-[5,5-(5',6'-dioctyloxy-4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]} (PDTIDTBT), which shows a relatively wide bandgap of 1.82 eV, good mobility, and high transmittance and ambient stability. In this work, we fabricate an OPV device using monolayer graphene as top electrode. Due to the stability of PDTIDTBT in air and water, we use a wet transfer technique for graphene to fabricate semitransparent OPVs. We demonstrate OPVs based on the PDTIDTBT:Phenyl-C61/71-butyric acid methyl ester (PCBM) blend with maximum power conversion efficiencies (PCEs) of 6.1 and 4.75% using silver and graphene top electrodes, respectively. Our graphene-based device shows a high average visible transmittance (AVT) of 55%, indicating the potential of PDTIDTBT for window application and tandem devices. Therefore, we also demonstrate tandem devices using the PDTIDTBT:Phenyl-C61-butyric acid methyl ester (PC60BM) blend in both series and parallel connections with average PCEs of 7.3 and 7.95%, respectively. We also achieve a good average PCE of 8.26% with an average open circuit voltage (Voc) of 1.79 V for 2-terminal tandem OPVs using this blend. Based on tandem design, an OPV with PCE of 6.45% and AVT of 38% is demonstrated. Moreover, our devices show improved shelf life and ultraviolet (UV) stability (using CdSe/ZnS core shell quantum dots [QDs]) in ambient with 45% relative humidity.

2.
Phys Chem Chem Phys ; 20(36): 23674-23683, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30191206

RESUMEN

Here, brand new ternary hybrid solar cells comprising perovskite nanocrystals (NCs) with a complementary absorption profile of the organic host matrix are reported. In particular, NH2CH[double bond, length as m-dash]NH2PbI3 (FAPbI3) perovskite NCs are implemented in bulk heterojunction organic solar cells based on the pDPP5T-2 electron donating polymer and a [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) acceptor at various loading amounts and the fabricated hybrid photovoltaics are thoroughly studied by employing different optoelectrical characterization methods. Current-voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo-CELIV) reveal improved charge generation and charge transport properties upon incorporation of perovskite NCs into the photo-active layer of the hybrid solar cell. The power conversion efficiency (PCE) of the hybrid solar cell comprising 5% perovskite NCs is 10% enhanced compared to the organic reference, mainly due to the enlarged light harvesting and increased short circuit current density (Jsc). However, results suggest that introducing a higher amount of perovskite content induces bimolecular and trap-assisted recombination in the ternary devices. We perform a comprehensive transient absorption study of the charge transfer/transport mechanisms by employing femto-second pump-probe transient absorption spectroscopy (fs-TAS). fs-TAS measurements demonstrate a slower charge carrier recombination rate due to the introduction of perovskite NCs into the photoactive layer. Results reveal that DPP injects electrons from the singlet excited state into the perovskite NCs, which causes the desired cascading charge carrier transfer. In ternary blends, a small amount of FAPbI3 NCs provides an additional pathway in favor of the charge-separated state via the NCs, which, despite accelerating the depopulation of DPP's singlet excited state slightly slows down the charge-separation process between DPP and PC61BM. Interestingly, the loss processes are slowed down; an effect that is more important and, hence, explains the improved solar cell efficiency.

3.
Adv Mater ; 35(8): e2210146, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36609981

RESUMEN

Organic photovoltaics (OPV) has been considered for a long time a promising emerging solar technology. Currently, however, market shares of OPV are practically non-existent. A detailed meta-analysis of the literature published until mid-2021 is presented, focusing on one of the remaining issues that need to be addressed to translate the recent remarkable progress, obtained in devices' performance at lab-scale level, into the requirements able to boost the manufacturing-scale production. Namely, the active layer's thickness is referred to, which, together with device efficiency and stability, represents one of the biggest challenges of this technological research field. Papers describing solar cells containing non-fullerene acceptor (NFA) binary and ternary blends, as well as NFA plus fullerene acceptor (FA) ternary blends are reviewed. The common ground of all analyzed devices is their high-thickness active layers, compatible with large-area deposition techniques. By defining a new figure of merit to discuss the OPV thickness (thickness tolerance, TT), it is found that this parameter is not affected by the chemical family's nature of the active blend components. On the other hand, the analysis suggests that there are promising strategies to improve the TT, which are discussed in the conclusion section.

4.
Chemistry ; 15(8): 1876-85, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19132701

RESUMEN

The synthesis and properties of (5')TA(3')-t5 (8a) and (5')CG(3')-t5 (8b) conjugates, in which the self-complementary dinucleotides TA and CG are covalently bound to the central ring of alpha-quinquethiophene (t5), are described. According to molecular mechanics calculations, the preferred conformation of both 8a and 8b is that with the dinucleotide folded over the planar t5 backbone, with the nucleobases facing t5 at stacking distance. The calculations show that the aggregation process of 8a and 8b is driven by a mix of nucleobase-thiophene interactions, hydrogen bonding between nucleobases (non Watson-Crick (W&C) in TA, and W&C in CG), van der Waals, and electrostatic interactions. While 8b is scarcely soluble in any solvents, 8a is soluble in water, indicating that the aggregates of the former are more stable than those of the latter. Microfluidic-induced self-assembly studies of 8a showed the formation of lamellar, spherulitic, and dendritic supramolecular structures, depending on the concentration and solvent evaporation time. The self-assembled structures displayed micrometer dimensions in the xy plane of the substrate and nanometer dimensions in the z direction. Spatially resolved confocal microscopy and spectroscopy showed that the aggregates were characterized by intense fluorescence emission. Cast films of 8a from water solutions showed chirality transfer from the dinucleotide to t5. The hole mobility of the cast films of 8a was estimated using a two-electrode device under high vacuum and found to be up to two orders of magnitude greater than those previously measured for dinucleotide-quarterthiophene conjugates under the same experimental conditions.


Asunto(s)
Modelos Moleculares , Oligonucleótidos/síntesis química , Tiofenos/química , Dicroismo Circular , Electroquímica/métodos , Luminiscencia , Microscopía Confocal , Conformación Molecular , Estructura Molecular , Oligonucleótidos/química , Fotoquímica/métodos , Tiofenos/síntesis química
5.
J Phys Chem B ; 112(33): 10130-6, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18661927

RESUMEN

We report on the influence of the dielectric/organic interface properties on the electrical characteristics of field-effect transistors based on polyphenylenevinylene derivatives. Through a systematic investigation of the most common dielectric surface treatments, a direct correlation of their effect on the field-effect electrical parameters, such as charge carrier mobility, On/Off current ratio, threshold voltage, and current hysteresis, has been established. It is found that the presence of OH groups at the dielectric surface, already known to act as carrier traps for electrons, decreases the hole mobility whereas it does not substantially affect the other electrical characteristics. The treatment of silicon dioxide surfaces with gas phase molecules such as octadecyltrichlorosilane and hexamethyldisilazane leads to an improvement in hole mobility as well as to a decrease in current hysteresis. The effects of a dielectric polymer layer spin coated onto silicon dioxide substrates before deposition of the semiconductor polymer can be related not only to the OH groups density but also to the interaction between the dielectric and the semiconductor molecules. Specifically, the elimination of the OH groups produces the same effect observed with hexamethyldisilazane. The hole mobility values obtained with hexamethyldisilazane and polymer dielectrics are the highest reported to date for PPV-based field-effect transistors.

6.
Chemphyschem ; 8(18): 2621-6, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18061912

RESUMEN

A soluble, low-weight fraction of poly(alpha-vinyl,omega-n-hexyl-quaterthiophene), PT4Hex, having n-hexylquaterthiophenes as side-chain groups, is prepared by free-radical polymerization of alpha-vinyl,omega-n-hexyl-quaterthiophene and the corresponding properties compared to those of free di-n-hexylquaterthiophene (T4Hex). Optical analysis (absorption and emission) and X-ray diffraction data indicate that in the polyvinyl-locked architecture the quaterthiophene pendants adopt a cofacial arrangement with a mutual distance close enough for pi-pi orbitals to overlap ( approximately 4 A). As a consequence of the close chain packing, a shift of the reduction potential of about 0.5 V toward less negative values with respect to free T4Hex, is found for PT4Hex films. Due to its enhanced electron affinity, PT4Hex displays an electron-acceptor behavior when blended with alkylated and silylated quaterthiophenes acting as donors.


Asunto(s)
Química Física/métodos , Electroquímica/métodos , Polivinilos/química , Tiofenos/química , Electrónica , Electrones , Modelos Químicos , Conformación Molecular , Estructura Molecular , Polímeros/química , Solventes/química , Espectrofotometría/métodos , Difracción de Rayos X/métodos
7.
Sci Rep ; 7: 46268, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401918

RESUMEN

A series of three novel donor-acceptor systems based on C(3)-malononitrile-substituted phenothiazines was synthesised in good overall yields and their thermal, spectroscopic, and electrochemical properties were characterised. The compounds were prepared through a sequence of Ullmann-coupling, Vilsmeier-Haack formylation and Knoevenagel-condensation, followed by Suzuki-coupling reactions for introduction of aryl substitutents at C(7) position of the phenothiazine. The introduction of a donor unit at the C(7) position exhibited a weak impact on the optical and electrochemical characteristics of the compounds and led to amorphous films with bulk hole mobilities in the typical range reported for phenothiazines, despite the higher charge delocalisation as attested by computational studies. In contrast, highly ordered films were formed when using the C(7)-unsubstituted 3-malononitrile phenothiazine, exhibiting an outstanding mobility of 1 × 10-3 cm2 V-1 s-1, the highest reported for this class of compounds. Computational conformational analysis of the new phenothizanes suggested that free rotation of the substitutents at the C(7) position suppresses the ordering of the system, thereby hampering suitable packing of the new materials needed for high charge carrier mobility.

8.
J Nanosci Nanotechnol ; 6(6): 1673-7, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17025069

RESUMEN

Blends of an electron donor, i.e. a regioregular poly(3-hexylthiophene) (P3HT), with electron acceptors, a series of soluble quinquethiophene-S,S-dioxides (T5Os) bearing different alkyl side groups were self-assembled at surfaces. Scanning Force Microscopy (SFM) studies revealed that while the T5O symmetrically functionalized with two hexyl groups in the central thiophene (1) self-organizes into micrometer sized crystals embedded in a grainy matrix of P3HT, by substituting the central thiophene of 1 with one hexyl and one methyl unit (2) smaller and less anisotropic crystals of the acceptor having a sub-micrometer scale size were formed. The generation of these crystals is due to the joint effect of different non-covalent intermolecular interactions between the T5Os that self-segregate from the P3HT. By derivatizing the compound 1 with cyclo-hexyl moieties in the four external thiophenes molecule 3 was obtained. Such system was found to assemble into grainy disordered structures when co-deposited with P3HT, providing evidence for the absence of a phase segregation between the two components. Generally, the self-assembly at surfaces is governed by the interplay of intramolecular as well as intermolecular and interfacial interactions. In the present case, the cyclo-hexyl side groups in 3 both induce an intramolecular loss of planarity of the thiophene rings and hinders intermolecular interactions, reducing the tendency of the molecules to self-associate forming large crystals, whereas the symmetrical functionalization of the two central thiophenes with hexyl chains favours the crystallization of the T5O. The reported results demonstrate that subtle differences in the chemical functionalization can lead to different types of molecular architectures at surfaces. This is of importance since controlling the self-organization of pi-conjugated molecules at surfaces towards pre-programmed assemblies is a viable approach to enhance their electronic and luminescent properties, which should help to improve the performance of organic devices.


Asunto(s)
Nanotecnología/métodos , Tiofenos/química , Cristalización , Sustancias Macromoleculares , Microscopía de Fuerza Atómica , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Propiedades de Superficie
9.
J Mater Chem B ; 4(17): 2921-2932, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262970

RESUMEN

We report the design, synthesis and structure-property investigation of a new perylene diimide material (PDI-Lys) bearing lysine end substituents. Water processed films of PDI-Lys were prepared and their self-assembly, morphology and electrical properties in both inert and air environments were theoretically and experimentally investigated. With the aim of evaluating the potential of PDI-Lys as a biocompatible and functional neural interface for organic bioelectronic applications, its electrochemical impedance as well as the adhesion and viability properties of primary neurons on the PDI-Lys films were studied. By combining theoretical calculations and electrical measurements we show that due to conversion between neutral and zwitterionic anions, the PDI-Lys film conductivity increased significantly upon passing from air to an inert atmosphere, reaching a maximum value of 6.3 S m-1. We also show that the PDI-Lys film allows neural cell adhesion and neuron differentiation and decreases up to 5 times the electrode/solution impedance in comparison to a naked gold electrode. The present study introduces an innovative, water processable conductive film usable in organic electronics and as a putative neural interface.

10.
Adv Healthc Mater ; 4(8): 1190-202, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25721438

RESUMEN

Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality.


Asunto(s)
Materiales Biocompatibles/química , Semiconductores , Tiofenos/química , Animales , Adhesión Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Lisina/química , Microscopía de Fuerza Atómica , Microscopía Confocal , Estructura Molecular , Neuritas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas , Propiedades de Superficie
11.
Chem Commun (Camb) ; (18): 2028-9, 2002 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-12357763

RESUMEN

A power conversion efficiency of 0.37%, under white light of 80 mW cm-2 intensity, was obtained when a fullerene-azothiophene dyad was used as the active layer of a photovoltaic cell.

12.
ACS Appl Mater Interfaces ; 6(23): 21416-25, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25347719

RESUMEN

The replacement of common fullerene derivatives with neat-C70 could be an effective approach to restrain the costs of organic photovoltaics and increase their sustainability. In this study, bulk-heterojunction solar cells made of neat-C70 and low energy-gap conjugated polymers, PTB7 and PCDTBT, are thoroughly investigated and compared. Upon replacing PC70BM with C70, the mobility of positive carriers in the donor phase is roughly reduced by 1 order of magnitude, while that of electrons is only slightly modified. It is shown that the main loss mechanism of the investigated neat-C70 solar cells is a low mobility-lifetime product. Nevertheless, PCDTBT:C70 devices undergo a limited loss of 7.5%, compared to the reference PCDTBT:PC70BM cells, reaching a record efficiency (4.44%) for polymer solar cells with unfunctionalized fullerenes. The moderate efficiency loss of PCDTBT:C70 devices, due to an unexpected excellent miscibility of PCDTBT:C70 blends, demonstrates that efficient solar cells made of neat-fullerene are possible. The efficient dispersion of C70 in the PCDTBT matrix is attributed to an interaction between fullerene and the carbazole unit of the polymer.

13.
J Phys Chem Lett ; 4(11): 1821-8, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26283115

RESUMEN

The photogeneration of Frenkel-type excitons, instead of pairs of free charges, is one of the main drawbacks of organic photovoltaics, when compared with the inorganic counterpart. The strong Coulomb interaction of charge carriers of opposite sign in organic materials is responsible for the complexity of the process of generation of unbound charges, affecting the photogenerated current and still not clearly understood, as well as for the free energy loss of electrons resulting in a diminished open circuit voltage. Despite this practical limitation, record power conversion efficiencies approaching 10% are currently reported for lab-scale single-junction structures made of low-bandgap electron-donating conjugated small molecules or polymers blended with electron-accepting fullerene derivatives. To go beyond, a deep understanding of charge generation dynamics, highly system dependent, is necessary for the definition of the rules for the design of high-performance organic materials for the photovoltaic application and possibly the reduction of exciton binding energy, through the increase of the dielectric constant, which definitively would overcome the practical constraints to high efficiency organic solar cells.

14.
Chemistry ; 14(2): 513-21, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17933003

RESUMEN

Quaterthiophene-dinucleotide conjugates 5'TA3'-t4-3'AT5', 5'AA3'-t4-3'AA5', and 5'TT3'-t4-3'TT5' (TA: thymidine-adenosine, AA: adenosine-adenosine, TT: thymidine-thymidine) were synthesized and analyzed by a combination of spectroscopy and microscopy, electrical characterization, and theoretical calculations. Circular dichroism (CD) experiments demonstrated a transfer of chirality from the dinucleotides to quaterthiophene at high ionic strength and in cast films. The films were photoluminescent and electroactive. CD and photoluminescence spectra and current density/voltage plots (measured under dynamic vacuum) displayed significant variation on changing the dinucleotide scaffold. Molecular mechanics and molecular dynamics calculations indicated that the conformation and packing modes of the conjugates are the result of a balance between intra- and intermolecular nucleobase-thiophene stacking interactions and intramolecular hydrogen bonding between the nucleobases.


Asunto(s)
Adenosina/química , Nucleótidos/química , Nucleótidos/síntesis química , Tiofenos/química , Timidina/química , Electroquímica , Enlace de Hidrógeno , Luminiscencia , Mediciones Luminiscentes/métodos , Modelos Moleculares , Estructura Molecular , Fotoquímica , Solubilidad , Espectrofotometría Ultravioleta/métodos , Estereoisomerismo , Agua/química
15.
Chemistry ; 13(36): 10046-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18000929

RESUMEN

The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

16.
Chemistry ; 11(19): 5765-76, 2005 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16041819

RESUMEN

The synthesis and photophysical characterization of a series of fullerene-based, donor-acceptor dyads is presented, along with a description of their behavior as single molecular components in photovoltaic cells. The spectroscopic and photophysical properties of the dyads, investigated by steady-state fluorescence spectroscopy, pico- and nanosecond transient optical spectroscopy and time-resolved electron paramagnetic resonance (EPR) spectroscopy, revealed that the dyads undergo multiple-step energy transfer from the donor singlet excited state to the fullerene triplet excited state, which in turn decays to the donor triplet state. The inefficient formation of a charge-separated state, both in solution and in the solid state, translates into a poor photovoltaic performance of dyads 2 b-4 b if compared to that of dyad 1 b, in which photoinduced electron transfer is operative in the solid state. In addition, the results of the photophysical investigation suggested that the performance of the solar cells was also limited by the low-lying donor triplet excited state that acts as a photoexcitation energy sink.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA