Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Anat ; 235(2): 313-345, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125128

RESUMEN

The limbless skink Ophiomorus punctatissimus is a cryptozoic species found in the Peloponnese region of Greece and on the Greek island Kythira. To provide the first thorough description of the cranial and postcranial osteology of this species, both disarticulated specimens and X-ray computed tomographies of wet-preserved specimens were examined in detail. Resulting from this, an anatomical atlas of this species is provided. Two separate considerations, an evolutionary and an ecomorphological one, are made based on the observed adaptations related to limb loss in this skink. The structure of the girdles shows a particular pattern of reduction: whereas the pelvic girdle is mostly vestigial, the pectoral girdle is instead well developed, with all the elements typical of limbed lizards except for the actual limbs. This led us to hypothesize an asynchronous pattern of limb reduction during the evolution of this species, in which the hindlimbs regressed earlier than the forelimbs. Furthermore, considerations based on overall body morphology, osteology and the structure of the inner ear led to the recognition of this species as a burrowing ecomorph. In contrast to the morphology normally displayed in this ecomorph, O. punctatissimus is characterized by the retention of autotomic vertebrae in its tail. This is consistent with the habitats in which it lives, where active burrowing would be difficult because of the hard, rocky terrain. Instead, this skink hides among rocks on the surface and is, therefore, subject to greater predation risk.


Asunto(s)
Evolución Biológica , Lagartos/anatomía & histología , Esqueleto/anatomía & histología , Animales , Extremidades , Osteología
2.
Ecol Evol ; 13(12): e10791, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094152

RESUMEN

In animals, the success of particular lineages can be measured in terms of their number of species, the extent of their geographic range, the breadth of their habitats and ecological niches, and the diversity of their morphological and life-history traits. Here, we review the distribution, ecology, morphology and life history of skinks, a diverse lineage of terrestrial vertebrates. We compared key traits between the three subfamilies of skinks, and between skinks and non-scincid lizards. There are currently 1743 described species of skink, which represent 24% of global lizard diversity. Since 2010, 16% of lizard descriptions have been of skinks. The centres of skink diversity are in Australia, New Guinea, southeast Asia, Oceania, Madagascar and central Africa. Compared with non-scincid lizards, skinks have larger distributional ranges, but smaller body sizes. Sexual size dimorphism is rare in skinks. Almost a quarter (23%) of skinks exhibit limb reduction or loss, compared with just 3% of non-scincid lizards. Skinks are more likely to be viviparous (34% of species) compared with non-scincids (13%), and have higher clutch/litter sizes than non-scincids. Although skinks mature later than non-scincids, their longevity is similar to that exhibited by other lizard groups. Most skinks (88%) are active foragers, and they are more likely to be carnivorous than non-scincids. Skinks are more likely to be diurnal or cathemeral than other lizard groups, but they generally have lower field body temperatures compared with non-scincids. The success of skinks appears to be both a result of them hitting upon a winning body plan and ecology, and their capacity to regularly deviate from this body plan and adapt their ecology and life history (e.g. repeated limb reduction and loss, transitions to viviparity) to prevailing conditions.

3.
Evolution ; 76(6): 1195-1208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35355258

RESUMEN

Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.


Asunto(s)
Lagartos , Adaptación Fisiológica , Animales , Extremidades , Lagartos/anatomía & histología , Filogenia
4.
Biol Rev Camb Philos Soc ; 96(3): 1035-1050, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33538028

RESUMEN

Elongated snake-like bodies associated with limb reduction have evolved multiple times throughout vertebrate history. Limb-reduced squamates (lizards and snakes) account for the vast majority of these morphological transformations, and thus have great potential for revealing macroevolutionary transitions and modes of body-shape transformation. Here we present a comprehensive review on limb reduction, in which we examine and discuss research on these dramatic morphological transitions. Historically, there have been several approaches to the study of squamate limb reduction: (i) definitions of general anatomical principles of snake-like body shapes, expressed as varying relationships between body parts and morphometric measurements; (ii) framing of limb reduction from an evolutionary perspective using morphological comparisons; (iii) defining developmental mechanisms involved in the ontogeny of limb-reduced forms, and their genetic basis; (iv) reconstructions of the evolutionary history of limb-reduced lineages using phylogenetic comparative methods; (v) studies of functional and biomechanical aspects of limb-reduced body shapes; and (vi) studies of ecological and biogeographical correlates of limb reduction. For each of these approaches, we highlight their importance in advancing our understanding, as well as their weaknesses and limitations. Lastly, we provide suggestions to stimulate further studies, in which we underscore the necessity of widening the scope of analyses, and of bringing together different perspectives in order to understand better these morphological transitions and their evolution. In particular, we emphasise the importance of investigating and comparing the internal morphology of limb-reduced lizards in contrast to external morphology, which will be the first step in gaining a deeper insight into body-shape variation.


Asunto(s)
Evolución Biológica , Lagartos , Animales , Extremidades , Filogenia
5.
J Morphol ; 281(7): 808-833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449812

RESUMEN

The skull osteology of Hierophis viridiflavus is here described and figured in detail on the basis of 18 specimens. The sample includes specimens from the ranges of both H. viridiflavus viridiflavus and H. viridiflavus carbonarius as well as specimens not identified at sub-specific level. The main characters that define H. viridiflavus in comparison to the parapatric congeneric species Hierophis gemonensis are wide maxillary diastema, basioccipital crest well distinct in three lobes and basioccipital process well marked. The foramina of the otoccipital and prootic, and the basioccipital process of the basioccipital are among the most ontogenetically variable characters, as indicated by two juvenile specimens included in the sample. A specimen-level phylogenetic analysis including H. gemonensis and other outgroups (overall 6 species, 26 specimens, 64 skull characters) recovered all H. viridiflavus specimens in one clade, indicating the presence of a clear phylogenetic signal in the applied characters. However, the resolution within the H. viridiflavus clade is poor the monophyly of H. viridiflavus carbonarius was retrieved, but not that of Hierophis v. viridiflavus. Probably due to the relatively high variability, the skull morphology does not support the recently proposed specific status of the two subspecies.


Asunto(s)
Colubridae/anatomía & histología , Osteología , Filogenia , Cráneo/anatomía & histología , Animales , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA