RESUMEN
The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.
RESUMEN
The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.
RESUMEN
Corallivorous snail feeding is a common source of tissue loss for the threatened coral, Acropora palmata, accounting for roughly one-quarter of tissue loss in monitored study plots over seven years. In contrast with larger threats such as bleaching, disease, or storms, corallivory by Coralliophila abbreviata is one of the few direct sources of partial mortality that may be locally managed. We conducted a field experiment to explore the effectiveness and feasibility of snail removal. Long-term monitoring plots on six reefs in the upper Florida Keys were assigned to one of three removal treatments: (1) removal from A. palmata only, (2) removal from all host coral species, or (3) no-removal controls. During the initial removal in June 2011, 436 snails were removed from twelve 150 m(2) plots. Snails were removed three additional times during a seven month "removal phase", then counted at five surveys over the next 19 months to track recolonization. At the conclusion, snails were collected, measured and sexed. Before-After-Control-Impact analysis revealed that both snail abundance and feeding scar prevalence were reduced in removal treatments compared to the control, but there was no difference between removal treatments. Recolonization by snails to baseline abundance is estimated to be 3.7 years and did not differ between removal treatments. Recolonization rate was significantly correlated with baseline snail abundance. Maximum snail size decreased from 47.0 mm to 34.6 mm in the removal treatments. The effort required to remove snails from A. palmata was 30 diver minutes per 150 m(2) plot, compared with 51 min to remove snails from all host corals. Since there was no additional benefit observed with removing snails from all host species, removals can be more efficiently focused on only A. palmata colonies and in areas where C. abbreviata abundance is high, to effectively conserve A. palmata in targeted areas.