Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 209(9): 1635-1651, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104111

RESUMEN

The initiation of CD8+ T cell responses against dead cell-associated Ags is tightly regulated, facilitating adaptive immunity against pathogens and tumors while preventing autoimmunity. It is now well established that dying cells actively regulate the generation of CD8+ T cell responses via the release or exposure of damage-associated molecular patterns. However, it is unclear whether nonproteasomal proteases (activated in stressed and dying cells) can influence the availability of Ags for cross-presentation. Using a mouse model of immunogenic necrosis, we investigated the role of tumor-derived proteases in the priming of CD8+ T cells. We demonstrate that proteases released from necrotic tumor cells can degrade whole-protein Ag, generating proteolytic intermediates that are efficiently cross-presented by dendritic cells and enhance CD8+ T cell cross-priming. We identify a dominant role for calpain proteases, which are activated during necrotic cell death induced by severe heat shock. Mechanistically, proteolytic intermediates generated by tumor-derived proteases associate with necrotic tumor cell debris, which acts as a vehicle for Ag transfer that facilitates highly efficient cross-presentation in dendritic cells. Our results suggest that proteolytic systems activated in Ag donor cells during cell death may influence the availability of antigenic substrates for cross-presentation, thereby regulating the antigenicity of cell death.


Asunto(s)
Reactividad Cruzada , Neoplasias , Presentación de Antígeno , Linfocitos T CD8-positivos , Calpaína/metabolismo , Células Dendríticas , Humanos , Necrosis/metabolismo , Neoplasias/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445503

RESUMEN

Obesity is a major risk factor for developing cancer, with obesity-induced immune changes and inflammation in breast (BC) and colorectal cancer (CRC) providing a potential link between the two. This study investigates systemic effects of obesity on adaptive and innate immune cells in healthy and tumour-bearing mice. Immune cells from lean and obese mice were phenotyped prior to implantation of either BC (C57mg and EO771.LMB) or CRC (MC38) cells as tumour models. Tumour growth rate, tumour-infiltrating lymphocytes (TIL) and peripheral blood immune cell populations were compared between obese and lean mice. In vitro studies showed that naïve obese mice had higher levels of myeloid cells in the bone marrow and bone marrow-derived dendritic cells expressed lower levels of activation markers compared to cells from their lean counterparts. In the tumour setting, BC tumours grew faster in obese mice than in lean mice and lower numbers of TILs as well as higher frequency of exhausted T cells were observed. Data from peripheral blood showed lower levels of myeloid cells in tumour-bearing obese mice. This study highlights that systemic changes to the immune system are relevant for tumour burden and provides a potential mechanism behind the effects of obesity on cancer development and progression in patients.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Colorrectales/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Obesidad/inmunología , Inmunidad Adaptativa , Animales , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Femenino , Humanos , Masculino , Ratones , Células Mieloides/metabolismo , Trasplante de Neoplasias , Microambiente Tumoral
3.
Eur J Nutr ; 57(6): 2037-2053, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29119235

RESUMEN

PURPOSE: The gut-liver interaction suggests that modification of gut bacterial flora using probiotics and synbiotics may improve liver function. This systematic review and meta-analysis aimed to clarify the effect of probiotics and synbiotics consumption on the serum concentration of liver function enzymes. METHODS: PubMed (MEDLINE), Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library (Central) were searched from 1980 to August 2017 for studies where adults consumed probiotics and/or synbiotics in controlled trials and changes in liver function enzymes were examined. RESULTS: A total of 17 studies (19 trials) were included in the meta-analysis. Random effects meta-analyses were applied. Probiotics and synbiotics significantly reduced serum alanine aminotransferase [- 8.05 IU/L, 95% confidence interval (CI) - 13.07 to - 3.04; p = 0.002]; aspartate aminotransferase (- 7.79 IU/L, 95% CI: - 13.93 to - 1.65; p = 0.02) and gamma-glutamyl transpeptidase (- 8.40 IU/L, 95% CI - 12.61 to - 4.20; p < 0.001). Changes in the serum concentration of alkaline phosphatase and albumin did not reach a statistically significant level. Changes to bilirubin levels were in favour of the control group (0.95 µmol/L, 95% CI 0.48-1.42; p < 0.001). Subgroup analysis suggested the existence of liver disease at baseline, synbiotics supplementation and duration of supplementation ≥ 8 weeks resulted in more pronounced improvement in liver function enzymes than their counterparts. CONCLUSIONS: Probiotics and synbiotics may be suggested as supplements to improve serum concentration of liver enzymes, especially when synbiotics administered for a period ≥ 8 weeks and in individuals with liver disease.


Asunto(s)
Pruebas de Función Hepática , Hígado/enzimología , Probióticos , Simbióticos , Adulto , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Prebióticos
4.
Int J Pharm ; 664: 124621, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182745

RESUMEN

Conjugation of a therapeutic agent to a polymer for enhanced delivery into target cells followed by its intracellular triggered release has proved to be an effective drug delivery approach. This approach is applied to the delivery of the immune-stimulatory unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide for an anti-tumour immune response after intratumoral administration. On average four CpG-1668 molecules were covalently linked to a 40-kDa amino-functionalised dextran polymer via either a non-reversible (CpG-dextran) or an intracellular redox-responsive disulfide linkage (CpG-SS-dextran). Dynamic light scattering analysis showed that both conjugates had a similar particle size and surface charge of 17 nm and -10 mV, respectively. Agarose gel electrophoresis analysis showed that CpG-SS-dextran was stable in the extracellular low glutathione (GSH) concentration range (i.e. 10-20 µM) and was cleaved at the higher intracellular GSH concentration (5 mM), while CpG-dextran was stable in both GSH concentrations. Uptake and activation assays on bone-marrow-derived dendritic cells showed no significant difference between free CpG, CpG-dextran and CpG-SS-dextran. In a mouse subcutaneous colorectal tumour model the CpG-SS-dextran showed a statistically significantly greater inhibition of tumour growth (p < 0.03) and prolonged survival (p < 0.001) compared to CpG-dextran or free CpG. These results demonstrate that the redox-triggered intracellular release of CpG from a dextran polymer carrier has promise for intratumoral therapeutic vaccination against cancer.


Asunto(s)
Dextranos , Oligodesoxirribonucleótidos , Oxidación-Reducción , Dextranos/química , Dextranos/administración & dosificación , Animales , Oligodesoxirribonucleótidos/administración & dosificación , Ratones , Glutatión/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intralesiones , Ratones Endogámicos BALB C
5.
Int J Pharm ; 627: 122236, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36174851

RESUMEN

The effect of dextran molecular weight on the in vitro physicochemical and immune properties of cytosine-phosphate-guanine (CpG) oligodeoxynucleotide-amino-dextran conjugates is investigated. CpG-1668 was conjugated at the 3'-end to amino-dextran of differing molecular weight (20, 40, 70 or 110-kDa) via a stable bis-aryl hydrazone linkage. Conjugate formation was confirmed by agarose gel electrophoresis and dynamic light scattering measured the size and surface charge of conjugates. Uptake and immune-stimulatory activity of CpG-dextran by antigen-presenting cells was evaluated by flow cytometry and confocal microscopy. Degradation by DNase I was monitored by loss of the fluorescent signal from labelled CpG and changes in size and zeta potential. Hydrazone bond formation (UV 354 nm) showed on average four CpG molecules conjugated per polymer. CpG-dextran prepared from 20 or 40-kDa dextran had a size of 17 nm while 70 or 110-kDa was 30 nm. CpG-dextran was preferentially taken up by dendritic cells, followed by macrophages and then B-cells. Only the 20-kDa dextran conjugate significantly enhanced uptake by bone-marrow derived dendritic cells (BMDCs) compared to free CpG. Confocal microscopy showed that CpG and CpG-dextran accumulates in the endo-lysosomal compartment of BMDCs at 24 h. All conjugates upregulated activation markers (CD40, CD80 or CD86) of BMDCs to a similar level as for free CpG. CpG-dextran 40-kDa produced highest levels of cytokines (TNF-α, IL-6, and IL-12p70) secreted by BMDCs. Enzymatic protection assays showed that the conjugate made from dextran 20-kDa provided no protection for CpG while the higher molecular weight conjugates reduced degradation by DNase I. The 40-kDa dextran conjugate produced the greatest in vitro immune activity, this was due to the conjugate being relatively small in size for cell uptake while sufficiently large enough to protect CpG from nuclease attack. These in vitro studies identify the need to consider the molecular weight of the carrier in bioconjugate design.


Asunto(s)
Células Dendríticas , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Peso Molecular , Fosfatos/metabolismo , Dextranos/metabolismo , Citosina , Guanina , Citocinas , Oligodesoxirribonucleótidos/farmacología , Desoxirribonucleasa I , Hidrazonas/farmacología
6.
Chem Asian J ; 17(12): e202200228, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427432

RESUMEN

Heparan sulfate (HS) is a highly sulfated natural carbohydrate that plays crucial roles in cancer, inflammation, and angiogenesis. Heparanase (HPSE) is the sole HS degrading endoglycosidase that cleaves HS at structure-dependent sites along the polysaccharide chain. Overexpression of HPSE by cancer cells correlates with increased tumor size and enhanced metastasis. Previously we have shown that a tetramer HS mimetic is a potent HPSE inhibitor displaying remarkable anticancer activity in vivo. Building on that work, we report the synthesis and testing of a novel library of single entity trimer glycolipid mimetics that effectively inhibit HPSE at low nanomolar concentrations. A lipophilic arm was introduced to assess whether an improvement of pharmacokinetics and plasma residence time would offset the reduction in charge and multivalency. Preclinical tests in a mouse syngeneic model showed effective tumor growth inhibition by the tetramer but not the trimer glycomimetic.


Asunto(s)
Neoplasias Colorrectales , Glucolípidos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Glucolípidos/farmacología , Heparitina Sulfato/farmacología , Ratones , Neovascularización Patológica
7.
Data Brief ; 35: 106883, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33748357

RESUMEN

Cytosine-phosphate-guanine (CpG) oligonucleotides are commonly-used vaccine adjuvants to promote the activation of antigen-presenting cells (APCs). To mount an effective immune response, CpG needs to be internalized and bind to its endosomal Toll-like receptor 9 (TLR-9) inside the APCs. Using flow cytometry and fluorescence microscopy, this article presents the cellular uptake data of the amino-dextran nanoparticle (aDNP) and aDNP loaded with CpG immobilized on its surface by either electrostatic adsorption or covalent conjugation. The uptake of fluorescently-labelled aDNPs by murine splenic dendritic cells and macrophages was determined by flow cytometry and uptake by murine bone-marrow-derived dendritic cells was evaluated by fluorescence microscopy. The data presented in this paper correlates with the in vitro immune-stimulatory activity observed for the two different CpG loading methods in the research article "Nanoparticle system based on amino-dextran as a drug delivery vehicle: immune-stimulatory CpG-oligonucleotide loading and delivery" (Nguyen et al., 2020) [1]. The data provide experimental evidence for a better understanding how the nanoparticle surface loading method of CpG influences the uptake of these nanoparticles by antigen-presenting cells as a step guide in the design of more effective vaccine formulations.

8.
Vaccines (Basel) ; 9(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802376

RESUMEN

Biologics can be combined with liquid polymer materials and electrospun to produce a dry nanofibrous scaffold. Unlike spray-drying and freeze-drying, electrospinning minimizes the physiological stress on sensitive materials, and nanofiber mat properties such as hydrophobicity, solubility, and melting temperature can be tuned based on the polymer composition. In this study, we explored the dry formulation of a virus-like particle (VLP) vaccine by electrospinning VLP derived from rabbit hemorrhagic disease virus modified to carry the MHC-I gp100 tumor-associated antigen epitope. VLP were added to a polyvinylpyrrolidone (PVP) solution (15% w/v) followed by electrospinning at 24 kV. Formation of a nanofibrous mat was confirmed by scanning electron microscopy, and the presence of VLP was confirmed by transmission electron microscopy and Western blot. VLP from the nanofibers induced T-cell activation and interferon- (IFN-) γ production in vitro. To confirm in vivo cytotoxicity, Pmel mice treated by injection with gp100 VLP from nanofibers induced a gp100 specific immune response, lysing approximately 65% of gp100-pulsed target cells, comparable to mice vaccinated with gp100 VLP in PBS. VLP from nanofibers also induced an antibody response. This work shows that electrospinning can be used to dry-formulate VLP, preserving both humoral and cell-mediated immunity.

9.
Vaccines (Basel) ; 9(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066318

RESUMEN

Breast cancer (BC) is the most frequently diagnosed cancer in women, with many patients experiencing recurrence following treatment. Antigens delivered on virus-like particles (VLPs) induce a targeted immune response and here we investigated whether the co-delivery of multiple antigens could induce a superior anti-cancer response for BC immunotherapy. VLPs were designed to recombinantly express murine survivin and conjugated with an aberrantly glycosylated mucin-1 (MUC1) peptide using an intracellular cleavable bis-arylhydrazone linker. Western blotting, electron microscopy and UV absorption confirmed survivin-VLP expression and MUC1 conjugation. To assess the therapeutic efficacy of VLPs, orthotopic BC tumours were established by injecting C57mg.MUC1 cells into the mammary fat pad of mice, which were then vaccinated with surv.VLP-SS-MUC1 or VLP controls. While wild-type mice vaccinated with surv.VLP-SS-MUC1 showed enhanced survival compared to VLPs delivering either antigen alone, MUC1 transgenic mice vaccinated with surv.VLP-SS-MUC1 showed no enhanced survival compared to controls. Hence, while co-delivery of two tumour antigens on VLPs can induce a superior anti-tumour immune response compared to the delivery of single antigens, additional strategies must be employed to break tolerance when targeted tumour antigens are expressed as endogenous self-proteins. Using VLPs for the delivery of multiple antigens represents a promising approach to improving BC immunotherapy, and has the potential to be an integral part of combination therapy in the future.

10.
Pharmaceutics ; 12(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260874

RESUMEN

The aim of this study is to prepare and characterize an amino-dextran nanoparticle (aDNP) platform and investigate two loading strategies for unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide. aDNP was prepared by desolvation of amino-dextran followed by the chemical crosslinking of amino groups. Size, surface charge, and surface morphology of aDNP was determined by dynamic light scattering and transmission electron microscopy. CpG was either loaded onto aDNP by adsorption (CpG-adsorbed-aDNP) or conjugated to aDNP (CpG-conjugated-aDNP). In vitro cytokine production by bone marrow-derived dendritic cells (BMDCs) was measured by flow cytometry. aDNPs size and zeta potential could be controlled to produce uniform particles in the size range of 50 to 300 nm, surface charge of -16.5 to +14 mV, and were spherical in shape. Formulation control parameters investigated included the anti-solvent, water-to-anti-solvent ratio, level of amine functionality of dextran, and the molar ratio of glutaraldehyde to amine. aDNP could be lyophilized without additional cryoprotectant. Unloaded cationic aDNP (+13 mV) showed acceptable in vitro hemolysis. Unloaded and CpG-loaded aDNPs showed no cytotoxicity on BMDCs. CpG-loaded nanoparticles stimulated cytokine production by BMDCs, the level of cytokine production was higher for CpG-conjugated-aDNP compared to CpG-absorbed-aDNP. aDNP is a promising new drug delivery platform as its offers versatility in loading and tuning of particle properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA