Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Methods ; 18(8): 937-944, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34226720

RESUMEN

Fluorescence in situ hybridization (FISH) allows researchers to visualize the spatial position and quantity of nucleic acids in fixed samples. Recently, considerable progress has been made in developing oligonucleotide (oligo)-based FISH methods that have enabled researchers to study the three-dimensional organization of the genome at super-resolution and visualize the spatial patterns of gene expression for thousands of genes in individual cells. However, there are few existing computational tools to support the bioinformatics workflows necessary to carry out these experiments using oligo FISH probes. Here, we introduce paint server and homology optimization pipeline (PaintSHOP), an interactive platform for the design of oligo FISH experiments. PaintSHOP enables researchers to identify probes for their experimental targets efficiently, to incorporate additional necessary sequences such as primer pairs and to easily generate files documenting library design. PaintSHOP democratizes and standardizes the process of designing complex probe sets for the oligo FISH community.


Asunto(s)
Pintura Cromosómica/métodos , Biología Computacional/métodos , Genoma Humano , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/química , Secuencias Repetitivas de Ácidos Nucleicos , Transcriptoma , Humanos
2.
Nucleic Acids Res ; 49(10): e58, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693773

RESUMEN

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , Oligonucleótidos/química , ARN/análisis , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Humanos , Ratones
4.
Methods Mol Biol ; 2784: 177-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502486

RESUMEN

Fluorescent in situ hybridization (FISH) enables the visualization of the position and abundance of nucleic acid molecules in fixed cell and tissue samples. Many FISH-based methods employ sets of synthetic, computationally designed DNA oligonucleotide (oligo) FISH probes, including massively multiplexed imaging spatial transcriptomics and spatial genomics technologies. Oligo probes can either be designed de novo or accessed from an existing database of pre-discovered probe sequences. This chapter describes the use of PaintSHOP, a user-friendly, web-based platform for the design of sets of oligo-based FISH probes. PaintSHOP hosts large collections of pre-discovered probes from many model organisms and also provides collections of functional sequences such as primers and readout domains and interactive tools to add these functional sequences to selected probes. Detailed examples are provided for three common experimental scenarios.


Asunto(s)
Genómica , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/genética , Cartilla de ADN
5.
Nat Commun ; 15(1): 1027, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310092

RESUMEN

Fluorescent in situ hybridization (FISH) is a powerful method for the targeted visualization of nucleic acids in their native contexts. Recent technological advances have leveraged computationally designed oligonucleotide (oligo) probes to interrogate > 100 distinct targets in the same sample, pushing the boundaries of FISH-based assays. However, even in the most highly multiplexed experiments, repetitive DNA regions are typically not included as targets, as the computational design of specific probes against such regions presents significant technical challenges. Consequently, many open questions remain about the organization and function of highly repetitive sequences. Here, we introduce Tigerfish, a software tool for the genome-scale design of oligo probes against repetitive DNA intervals. We showcase Tigerfish by designing a panel of 24 interval-specific repeat probes specific to each of the 24 human chromosomes and imaging this panel on metaphase spreads and in interphase nuclei. Tigerfish extends the powerful toolkit of oligo-based FISH to highly repetitive DNA.


Asunto(s)
ADN , Secuencias Repetitivas de Ácidos Nucleicos , Humanos , Hibridación Fluorescente in Situ/métodos , ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sondas de Oligonucleótidos/genética , Sondas de ADN/genética , Oligonucleótidos/genética
6.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39091817

RESUMEN

The accuracy of crucial nuclear processes such as transcription, replication, and repair, depends on the local composition of chromatin and the regulatory proteins that reside there. Understanding these DNA-protein interactions at the level of specific genomic loci has remained challenging due to technical limitations. Here, we introduce a method termed "DNA O-MAP", which uses programmable peroxidase-conjugated oligonucleotide probes to biotinylate nearby proteins. We show that DNA O-MAP can be coupled with sample multiplexed quantitative proteomics and next-generation sequencing to quantify DNA-protein and DNA-DNA interactions at specific genomic loci.

7.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945528

RESUMEN

Fluorescent in situ hybridization (FISH) is a powerful method for the targeted visualization of nucleic acids in their native contexts. Recent technological advances have leveraged computationally designed oligonucleotide (oligo) probes to interrogate >100 distinct targets in the same sample, pushing the boundaries of FISH-based assays. However, even in the most highly multiplexed experiments, repetitive DNA regions are typically not included as targets, as the computational design of specific probes against such regions presents significant technical challenges. Consequently, many open questions remain about the organization and function of highly repetitive sequences. Here, we introduce Tigerfish, a software tool for the genome-scale design of oligo probes against repetitive DNA intervals. We showcase Tigerfish by designing a panel of 24 interval-specific repeat probes specific to each of the 24 human chromosomes and imaging this panel on metaphase spreads and in interphase nuclei. Tigerfish extends the powerful toolkit of oligo-based FISH to highly repetitive DNA.

8.
Lab Chip ; 15(23): 4461-6, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26477676

RESUMEN

This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.


Asunto(s)
Acción Capilar , Dispositivos Laboratorio en un Chip , Papel , Hidróxidos/química , Porosidad , Factores de Tiempo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA