Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108091

RESUMEN

Living organisms on the surface biosphere are periodically yet consistently exposed to light. The adaptive or protective evolution caused by this source of energy has led to the biological systems present in a large variety of organisms, including fungi. Among fungi, yeasts have developed essential protective responses against the deleterious effects of light. Stress generated by light exposure is propagated through the synthesis of hydrogen peroxide and mediated by regulatory factors that are also involved in the response to other stressors. These have included Msn2/4, Crz1, Yap1, and Mga2, thus suggesting that light stress is a common factor in the yeast environmental response.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Saccharomyces cerevisiae/fisiología , Levaduras , Proteínas de la Membrana
2.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810747

RESUMEN

Hypoxia is defined as the decline of oxygen availability, depending on environmental supply and cellular consumption rate. The decrease in O2 results in reduction of available energy in facultative aerobes. The response and/or adaptation to hypoxia and other changing environmental conditions can influence the properties and functions of membranes by modifying lipid composition. In the yeast Kluyveromyces lactis, the KlMga2 gene is a hypoxic regulatory factor for lipid biosynthesis-fatty acids and sterols-and is also involved in glucose signaling, glucose catabolism and is generally important for cellular fitness. In this work we show that, in addition to the above defects, the absence of the KlMGA2 gene caused increased resistance to oxidative stress and extended lifespan of the yeast, associated with increased expression levels of catalase and SOD genes. We propose that KlMga2 might also act as a mediator of the oxidative stress response/adaptation, thus revealing connections among hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism in K. lactis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Kluyveromyces/fisiología , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Catalasa/genética , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipoxia , Kluyveromyces/genética , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Factores de Transcripción/genética
3.
FEMS Yeast Res ; 19(4)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31210264

RESUMEN

Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Glucosa/metabolismo , Kluyveromyces/genética , Factores de Transcripción/genética , Anaerobiosis , Regulación Fúngica de la Expresión Génica , Glucólisis , Kluyveromyces/metabolismo , Mutación , Transducción de Señal
4.
Cerebellum ; 17(4): 499-503, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29476442

RESUMEN

Mutations in KCNJ10, which encodes the inwardly rectifying potassium channel Kir4.1, a primary regulator of membrane excitability and potassium homeostasis, cause a complex syndrome characterized by seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance called SeSAME/EAST syndrome. We describe a 41-year-old patient with non-syndromic, slowly progressive, early-onset ataxia. Targeted next-generation sequencing identified a novel c.180 T > G (p.Ile60Met) missense homozygous mutation. The mutated residue Ile60Met likely impairs phosphatidylinositol 4, 5-bisphosphate (PIP2) binding which is known to play an essential role in channel gating. Our study expands the clinical and mutational spectrum of KCNJ10-related disorders and suggests that screening of this gene should be implemented in patients with early-onset ataxia, with or without syndromic features.


Asunto(s)
Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Degeneraciones Espinocerebelosas/genética , Adulto , Secuencia de Aminoácidos , Femenino , Homocigoto , Humanos , Modelos Moleculares , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Degeneraciones Espinocerebelosas/diagnóstico por imagen , Degeneraciones Espinocerebelosas/fisiopatología
5.
Front Microbiol ; 12: 705012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335537

RESUMEN

In unicellular organisms like yeasts, which do not have specialized tissues for protection against environmental challenges, the presence of cellular mechanisms to respond and adapt to stress conditions is fundamental. In this work, we aimed to investigate the response to environmental light in Kluyveromyces lactis. Yeast lacks specialized light-sensing proteins; however, Saccharomyces cerevisiae has been reported to respond to light by increasing hydrogen peroxide level and triggering nuclear translocation of Msn2. This is a stress-sensitive transcription factor also present in K. lactis. To investigate light response in this yeast, we analyzed the different phenotypes generated by the deletion of the hypoxia responsive and lipid biosynthesis transcription factor KlMga2. Alterations in growth rate, mitochondrial functioning, ROS metabolism, and fatty acid biosynthesis provide evidence that light was a source of stress in K. lactis and that KlMga2 had a role in the light-stress response. The involvement of KlMsn2 and KlCrz1 in light stress was also explored, but the latter showed no function in this response.

6.
J Biomol Struct Dyn ; 39(7): 2490-2501, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32223547

RESUMEN

The mutual interaction between environment and life is a main topic of biological sciences. An interesting aspect of this interaction is the existence of biological rhythms spanning all the levels of organisms from bacteria to humans. On the other hand, the existence of a coupling between external oscillatory stimuli and adaptation and evolution rate of biological systems is a still unexplored issue. Here we give the demonstration of a substantial increase of heritable phenotypic changes in yeast, an organism lacking a photoreception system, when growing at 12 h light/dark cycles, with respect to both stable dark (or light) or non-12 + 12 h cycling. The model system was a yeast strain lacking a gene whose product is at the crossroad of many different physiological regulations, so ruling out any simple explanation in terms of increase in reverse gene mutations. The abundance of intrinsically disordered protein regions (IDPRs) in both deleted gene product and in its vast ensemble of interactors supports the hypothesis that resonance with the environmental cycle might be mediated by intrinsic disorder-driven interactions of protein molecules. This result opens to the speculation of the effect of environment/biological resonance phenomena in evolution and of the role of protein intrinsically disordered regions as internal mediators.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Periodicidad , Fotoperiodo , Dominios Proteicos , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA