Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202400669, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924194

RESUMEN

Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.

2.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687197

RESUMEN

The catalytic oxidation of phenethoxybenzene as a lignin model compound with a ß-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process's operational conditions was carried out using response surface methodology. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite experimental design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 °C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatography from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed. Furthermore, the successful cleavage of the ß-O-4 bond in the Kraft lignin was verified by gas chromatography-mass spectrometry analysis of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products.

3.
Diabetologia ; 64(6): 1389-1401, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33710396

RESUMEN

AIMS/HYPOTHESIS: Skeletal muscle is a key target organ for insulin's actions and is the main regulator of blood glucose. In obese individuals and animal models, there is a chronic low-grade inflammatory state affecting highly metabolic organs, leading to insulin resistance. We have described that adult skeletal muscle fibres can release ATP to the extracellular medium through pannexin-1 (PANX1) channels. Besides, it is known that high extracellular ATP concentrations can act as an inflammatory signal. Here, we propose that skeletal muscle fibres from obese mice release high levels of ATP, through PANX1 channels, promoting inflammation and insulin resistance in muscle cells. METHODS: C57BL/6J mice were fed with normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. Muscle fibres were isolated from flexor digitorum brevis (FDB) muscle. PANX1-knockdown FDB fibres were obtained by in vivo electroporation of a short hairpin RNA Panx1 plasmid. We analysed extracellular ATP levels in a luciferin/luciferase assay. Gene expression was studied with quantitative real-time PCR (qPCR). Protein levels were evaluated by immunoblots, ELISA and immunofluorescence. Insulin sensitivity was analysed in a 2-NBDG (fluorescent glucose analogue) uptake assay, immunoblots and IPGTT. RESULTS: HFD-fed mice showed significant weight gain and insulin resistance compared with NCD-fed mice. IL-6, IL-1ß and TNF-α protein levels were increased in FDB muscle from obese mice. We observed high levels of extracellular ATP in muscle fibres from obese mice (197 ± 55 pmol ATP/µg RNA) compared with controls (32 ± 10 pmol ATP/µg RNA). ATP release in obese mice fibres was reduced by application of 100 µmol/l oleamide (OLE) and 5 µmol/l carbenoxolone (CBX), both PANX1 blockers. mRNA levels of genes linked to inflammation were reduced using OLE, CBX or 2 U/ml ATPase apyrase in muscle fibres from HFD-fed mice. In fibres from mice with pannexin-1 knockdown, we observed diminished extracellular ATP levels (78 ± 10 pmol ATP/µg RNA vs 252 ± 37 pmol ATP/µg RNA in control mice) and a lower expression of inflammatory markers. Moreover, a single pulse of 300 µmol/l ATP to fibres from control mice reduced insulin-mediated 2-NBDG uptake and promoted an elevation in mRNA levels of inflammatory markers. PANX-1 protein levels were increased two- to threefold in skeletal muscle from obese mice compared with control mice. Incubation with CBX increased Akt activation and 2-NBDG uptake in HFD fibres after insulin stimulation, rescuing the insulin resistance condition. Finally, in vivo treatment of HFD-fed mice with CBX (i.p. injection of 10 mg/kg each day) for 14 days, compared with PBS, reduced extracellular ATP levels in skeletal muscle fibres (51 ± 10 pmol ATP/µg RNA vs 222 ± 28 pmol ATP/µg RNA in PBS-treated mice), diminished inflammation and improved glycaemic management. CONCLUSIONS/INTERPRETATION: In this work, we propose a novel mechanism for the development of inflammation and insulin resistance in the skeletal muscle of obese mice. We found that high extracellular ATP levels, released by overexpressed PANX1 channels, lead to an inflammatory state and insulin resistance in skeletal muscle fibres of obese mice.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conexinas/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Obesos , Obesidad/etiología
4.
J Chem Inf Model ; 61(4): 2048-2061, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33784106

RESUMEN

Nanoscale molecularly imprinted polymers (nanoMIPs) are powerful molecular recognition tools with broad applications in the diagnosis, prognosis, and treatment of complex diseases. In this work, fully atomistic molecular dynamics (MD) simulations are used to assist the design of nanoMIPs with recognition capacity toward l-fucose and d-mannose as prototype disease biomarkers. MD simulations were conducted on prepolymerization mixtures containing different molar ratios of the monomers N-isopropylacrylamide (NIPAM), methacrylamide (MAM), and (4-acrylamidophenyl)(amino)methaniminium acetate (AB) and fixed molar ratios of the cross-linker ethylene glycol dimethacrylate (EGDMA) in explicit acetonitrile as the porogenic solvent. Prepolymerization mixtures containing ternary mixtures of NIPAM (50%), MAM (25%), and AB (25%) exhibit the best imprinting potential for both l-fucose and d-mannose, as they maximize (i) the stability of template-monomer plus template-cross-linker interactions, (ii) the number of functional monomers plus cross-linkers organized around the template, and (iii) the number of hydrogen bonds participating in template recognition. The studied prepolymerization mixtures exhibit an overall increased recognition capacity toward d-mannose over l-fucose, which is attributed to the higher hydrogen-bonding capacity of the former template. Our results are valuable to guide the synthesis of efficient nanoMIPs for sugar recognition and provide a computational framework extensible to any other template, monomer, or cross-linker combination, thus constituting a promising strategy for the rational design of molecularly imprinted materials.


Asunto(s)
Impresión Molecular , Fucosa , Manosa , Simulación de Dinámica Molecular , Polímeros
5.
J Chem Inf Model ; 61(5): 2463-2474, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33929203

RESUMEN

E-selectin is a cell-adhesion receptor with specific recognition capacity toward sialo-fucosylated Lewis carbohydrates present in leukocytes and tumor cells. E-selectin interactions mediate the progress of inflammatory processes and tumor metastasis, which aroused the interest in using this protein as a biomolecular target to design glycomimetic inhibitors for active targeting or therapeutic purposes. In this work, we report the rational discovery of two novel glycomimetic peptides targeting E-selectin based on mutations of the reference selectin-binding peptide IELLQAR. Sixteen single or double mutants at Ile1, Leu3, Leu4, and Arg7 residues were evaluated as potential candidates for E-selectin targeting using 50 ns molecular dynamics (MD) simulations. Nine peptides showing a stable association with the functional pocket were modified by adding a cysteine residue to the N-terminus to confer versatility for further chemical conjugation. Subsequent 50 ns MD simulations resulted in five cysteine-modified peptides with retained or improved E-selectin binding potential. Then, 300 ns accelerated MD (aMD) simulations were used to examine the binding properties of the best five cysteine-modified peptides. CIEELQAR and CIELFQAR exhibit the most selective association with the functional pocket of E-selectin, as revealed by potential of mean force profiles. Microscale thermophoresis experiments confirmed the E-selectin binding capacity of the selected peptides with KD values in the low micromolar range (CIEELQAR KD = 35.0 ± 1.4 µM; CIELFQAR KD = 16.4 ± 0.7 µM), which are 25-fold lower than the reported value for the native ligand sLex (KD = 878 µM). Our findings support the potential of CIEELQAR and CIELFQAR as novel E-selectin-targeting peptides with high recognition capacity and versatility for chemical conjugation, which are critical for enabling future applications in active targeting.


Asunto(s)
Selectina E , Péptidos , Adhesión Celular , Ligandos , Antígeno Sialil Lewis X
6.
Molecules ; 25(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992508

RESUMEN

OBJECTIVE: Obesity induced by high-fat diet (HFD) elicits white adipose tissue dysfunction. In this study, we have hypothesized that the metabolic modulator eicosapentaenoic acid (EPA) combined with the antioxidant hydroxytyrosol (HT) attenuates HFD-induced white adipose tissue (WAT) alterations. METHODS: C57BL/6J mice were administered with a HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg/kg/day), HT (5 mg/kg/day), or both for 12 weeks. Determinations in WAT include morphological parameters, EPA and docosahexaenoic acid content in phospholipids (gas chromatography), lipogenesis, oxidative stress (OS) and inflammation markers, and gene expression and activities of transcription factors, such as sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma (PPAR-γ), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65 subunit) and nuclear factor erythroid 2-related factor 2 (Nrf2) (quantitative polymerase chain reaction and enzyme linked immunosorbent assay). RESULTS: HFD led to WAT hypertrophy in relation to PPAR-γ downregulation. WAT metabolic dysfunction was characterized by upregulation of lipogenic SREBP-1c system, mitochondrial energy metabolism depression, loss of the antioxidant Nrf2 signaling with OS enhancement, n-3 long-chain polyunsaturated fatty acids depletion and activation of the pro-inflammatory NF-κB system. EPA and HT co-supplementation diminished HFD-dependent effects additively, reaching values close or similar to controls. CONCLUSION: Data presented strengthen the importance of combined protocols such as EPA plus HT to attenuate metabolic-inflammatory states triggered by obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácido Eicosapentaenoico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Obesidad , Alcohol Feniletílico/análogos & derivados , Tejido Adiposo Blanco/anomalías , Tejido Adiposo Blanco/patología , Animales , Masculino , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Alcohol Feniletílico/farmacología
8.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869558

RESUMEN

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.

9.
Surg Neurol Int ; 15: 156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840596

RESUMEN

Background: Transsphenoidal surgery has become a key element in the approach to skull base pathologies. The objective of the study was to explore the morphometry of the sphenoidal region in the Peruvian population, with an emphasis on understanding its specific anatomical characteristics and providing quantitative data for the planning of transsphenoidal surgery. Methods: A cross-sectional study included a random sample of 81 cases of healthy individuals who presented to the Radiology Department of a Private Hospital Center in Peru over 1 year. Skull computed tomography scans without contrast were performed, and a detailed morphometric analysis was conducted by an expert neurosurgeon, including measurements of four parameters to evaluate the anatomy of the craniofacial region. Results: Most participants exhibited complete sellar pneumatization, followed by incomplete sellar pneumatization, while conchal pneumatization was rare. Significant differences were found between men and women in the distance from the nasal opening to the dorsum of the sella turcica. No significant gender differences were observed in other anatomical measurements or significant changes with age in anatomical measurements. Conclusion: Morphometric analysis provides crucial data for the precise customization of surgical interventions in the Peruvian population, especially in transsphenoidal surgery. The results highlight the importance of considering individual anatomical differences and gender variability during surgical planning. Morphometry emerges as a valuable tool to enhance the quality and safety of transsphenoidal surgery by adapting surgical strategies to the specific anatomical dimensions of each patient.

10.
Surg Neurol Int ; 15: 9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344103

RESUMEN

Background: The foramen magnum, as an anatomical structure, holds clinical and functional significance due to its strategic location in the craniovertebral transition. A detailed understanding of its dimensions and shapes is crucial for better comprehension of related pathologies and for enhancing neurosurgical techniques within a specific population. The objective is to measure precise morphometric reference points of the foramen magnum in individuals of Peruvian ancestry, aiming to establish specific anatomical patterns and potential variations within this population. Methods: The study was conducted on 17 unidentified skulls donated to the NeuroZone3D Research Center, utilizing an inelastic and soft measuring tape as the tool. Our report considered direct anthropometric measurement techniques with data collection performed by a single researcher. Results: Distinct morphometric characteristics were observed in the foramen magnum of the Peruvian population compared to other studies. The average measurements of the skull base revealed a foramen magnum with a mean length of 33.80 mm and a width of 28.70 mm, along with right condyles measuring 25 mm in length and 14.10 mm in width, and left condyles measuring 23.80 mm in length and 13.90 mm in width. Conclusion: The morphometric analysis of the foramen magnum in the Peruvian population provides valuable insights into specific anatomical features within this ethnic group. These findings could have significant implications across various medical and surgical disciplines, from interpreting diagnostic images to designing more precise therapeutic interventions tailored to this population.

11.
Int J Mol Sci ; 14(8): 15740-54, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23899788

RESUMEN

Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.


Asunto(s)
Dieta Alta en Grasa , Peróxido de Hidrógeno/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Glutatión/metabolismo , Resistencia a la Insulina , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxidación-Reducción
12.
J Neurosurg Case Lessons ; 3(13)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36273859

RESUMEN

BACKGROUND: Spontaneous intracerebral hemorrhage is a neurological condition with high rates of morbidity and mortality, which is treated by various surgical techniques that seek minimal parenchymal distortion and maximum evacuation of the hematoma. OBSERVATIONS: The advancement of technology has allowed the development of minimally invasive techniques, but the high cost of its equipment is a limitation for its practice in developing countries or third world countries. A new technique called MEP-BA by its acronym in Spanish (microscope, polypropylene endoport and Foley catheter, bipolar forceps and aspiration) is presented, which seeks optimal results with low-cost materials through a polypropylene endoport with a sterile disposable syringe and Foley catheter, allowing the creation of transcortical or transsulcal corridors for the total evacuation of the hematoma. LESSONS: The neurosurgeon must be a creator and innovator of neurosurgical techniques and equipment that allow procedures to be reproducible worldwide. The MEP-BA technique provides low-cost access through which it allows the use of aspiration and coagulation devices, minimizing brain damage and maximizing the safety and efficacy of intracerebral hematoma evacuation.

13.
Data Brief ; 40: 107745, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005140

RESUMEN

About 25.7 million tons of waste tires (WT) are discarded each year worldwide causing important environmental, and health problems. This waste is difficult to manage and dispose due to its huge rate of generation and its extremely slow biodegradation. Therefore, many efforts are being made to valorise WTs into a series of marketable products under a circular economy framework. In the attempt to convert WT into higher-value products, thermochemical decomposition by pyrolysis has emerged as a promising process [1]. The pyrolysis is a thermochemical transformation (under an oxygen-depleted atmosphere) of the tire´s polymeric constituents: natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR) into three major fractions. These fractions are a gas (10-35%, TPG) which is usually used as a heat source (50 MJ kg-1), a solid consisting mainly of recovered carbon black (12-45%, rCB), and a liquid fraction (35-65%, TPO) containing a complex mixture of organic compounds. Among the high-value compounds that can be found in the TPO are D,L-limonene, isoprene, benzene, toluene, mixed-xylene, ethylbenzene, styrene, p-cymene, and some polycyclic aromatic hydrocarbons. This mixture is commonly used as a diesel substitute and owing to its complex composition it rarely is seen as a source for more valuable products. To overcome such a complexity, and selectively produce specific chemical identities, different types of catalysts have been used [2,3]. Herein, we provide a dataset from a systematic study about catalytic pyrolysis of WT for selectively producing benzene, toluene, and xylenes (BTX) and p-cymene on noble metals (Pd, Pt, Au) supported on titanate nanotubes (NT-Ti). The comprehensive analysis of this data was recently published, thus, the analytical techniques, experimental conditions and dataset are given in the present paper as a complement to that publication [1]. The reaction was evaluated in an analytical pyrolysis unit consisting in a micropyrolizer coupled to a mass spectrometer (Py-GC/MS) operating at temperatures between 400 and 450 °C in a fast pyrolysis regime (12 s). The effectivity of catalysts was measured in terms of selectivity to monoaromatics as BTX and p-cymene, under non-catalytic and for catalytic pyrolysis conditions. Moreover, the reaction was conducted on individual rubbers (Polyisoprene, Polybutadiene, and Styrene-Butadiene) and DL-limonene, to get deep insights into the transformation behaviour and reaction pathways. Therefore, the reader will find a data-in-brief paper containing some characterizations of the WTs used for the investigation, along with a complete dataset of Py-GC/MS results. Finally, the original files for the interpretation of the MS results are also provided, so that the reader can easily use this information to further expand the study to their own interest (industrial or scientific).

14.
Ind Eng Chem Res ; 61(17): 6052-6056, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37538052

RESUMEN

This communication proposes a preliminary simplified kinetic model for the hydrogenation of 1-phenyl-1,2-propanedione that can render up to eight compounds, involving regioselectivity and enantioselectivity. The catalytic system comprises two functionalities; the heterogeneous catalyst (Ir/TiO2) plays the role for the hydrogenation, whereas the adsorption/binding to the active site is played by a chiral molecule (cinchonidine), added to the reaction mixture. The reaction occurs at room temperature and total pressure of 40 bar. The product distribution shows competitive parallel and series pathways with up to 12 possible reactions. Despite the complexity of both reaction and catalyst system, a simplified kinetic model was able to predict the concentrations profiles. The model assumes the reactions to be apparent first order in the concentrations of reactant and intermediate products, while the kinetic constants include all other effects (partial pressure of hydrogen, solvent and catalyst effects, and the concentration of the chiral additive). The concentration profiles were well-modeled with low residual values. The errors in the kinetic constants (k-values) were small for all relevant parameters of the main reaction pathways. Two k-values are nil, which is the lower bound imposed in the model, suggesting that these reaction pathways are likely negligible. The positive outcome from this simplified model suggests that the process can be formally treated as a first-order irreversible homogeneous catalyzed reaction, despite a heterogeneous catalyst was employed (with a modifier). Despite the promising results, the model must be extended for a more general applicability, or conditions where it is applicable.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35294686

RESUMEN

In the present work, halloysite nanotubes modified with gold nanoparticles (AuNPs-HNT) are successfully prepared by wet chemical method for the catalytic degradation of phenothiazine dyes (azure B (AZB) and toluidine blue O (TBO)) and also cleaner reduction of 4-(4-nitrophenyl)morpholine (4NM) in the sodium borohydride (NaBH4) media. The catalyst is formulated by modifying the HNT support with a 0.964% metal loading using the HNT supports modified with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent to facilitate the anchoring sites to trap the AuNPs and to prevent their agglomeration/aggregation. The AuNPs-HNT catalyst is investigated for structural and morphological characterization to get insights about the formation of the catalyst for the effective catalytic reduction of dyes and 4NM. The microscopic studies demonstrate that AuNPs (2.75 nm) are decorated on the outer surface of HNT. The as-prepared AuNPs-HNT catalyst demonstrates AZB and TBO dye degradation efficiency up to 96% in 10 and 11 min, respectively, and catalytic reduction of 4NM to 4-morpholinoaniline (MAN) is achieved up to 97% in 11 min, in the presence of NaBH4 without the formation of any by-products. The pseudo-first-order rate constant (K1) value of the AuNPs-HNT catalyst for AZB, TBO, and 4NM were calculated to be 0.0078, 0.0055, and 0.0066 s-1, respectively. Moreover, the synthesized catalyst shows an excellent reusability with stable catalytic reduction for 7 successive cycles for both the dyes and 4NM. A plausible mechanism for the catalytic dye degradation and reduction of 4NM by AuNPs-HNT catalyst is proposed as well. The obtained results clearly indicate the potential of AuNPs-HNT as an efficient catalyst for the removal of dye contaminants from the aquatic environments and cleaner reduction of 4NM to MAN, insinuating future pharmaceutical applications.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35206294

RESUMEN

OBJECTIVE: To analyze the association between the behavioral profile of physical activity and sedentary time with subjective well-being and mental health in university students during the COVID-19 pandemic in Chile. METHODS: Cross-sectional study in a voluntary sample of 469 university students (22.4 ± 0.19 years; 66% women). According to students' self-reports of physical activity and sedentary time, four behavioral profiles were created to investigate their association with subjective well-being and mental health using one-factor ANOVA that was adjusted to a multifactorial model. RESULTS: The physically inactive and sedentary behavior profile presents the lowest levels of subjective well-being (p < 0.001), positive affective experiences (p < 0.001) and general mental health (p = 0.001). When adjusting for confounding variables, it was observed that the physically active and non-sedentary profile was associated with better general mental health (p < 0.01) in contrast to those who are physically active and sedentary. CONCLUSIONS: Chilean university students with a physically inactive and sedentary profile during the pandemic presented worse well-being and mental health, with a sedentary lifestyle being one of the variables that most affects the mental health of these students. Therefore, measures should be implemented to encourage this population to maintain adequate levels of physical activity and reduce sedentary times.


Asunto(s)
COVID-19 , Conducta Sedentaria , COVID-19/epidemiología , Chile/epidemiología , Estudios Transversales , Ejercicio Físico , Femenino , Humanos , Masculino , Salud Mental , Pandemias , SARS-CoV-2 , Estudiantes/psicología , Universidades
17.
Artículo en Inglés | MEDLINE | ID: mdl-34770200

RESUMEN

OBJECTIVE: To analyze the relationship between anxiety, self-esteem, happiness index and primary school students' academic performance in Chilean adolescents from the Biobío province. METHODOLOGY: 733 (46.1% girls; 12 (1.3 years)) public primary school students that completed the 2018 Health and School Performance Survey carried out in the Biobío province were included in this cross-sectional analysis. The BECK Anxiety Inventory (BAI) was used to measure anxiety while happiness index and self-esteem were measured using the subjective happiness scale and the Rosenberg self-esteem scale, respectively. School performance was measured by grade point average (GPA) of language, math, physical education and cumulative GPA, and behavior associated with cognition in the school context was also considered. The relationship between mental health indicators and school performance was investigated using a one-way ANOVA and Pearson correlation. RESULTS: In comparison to students with low anxiety levels and high self-esteem and happiness levels, students with higher anxiety levels, lower self-esteem and happiness levels perceived themselves as having memory problems. They were also slower to solve math problems, had a shorter attention span in class and presented more difficulties in solving complex tasks, as well as being more nervous during testing. These students also got the lowest grade point average in math, language and physical education. CONCLUSIONS: High anxiety levels, low self-esteem and low happiness levels were associated with lower school performance and weaker behavior associated with cognition in Chilean adolescents. Implementing plans of emotional education and mental health could improve academic achievement.


Asunto(s)
Trastornos de Ansiedad , Felicidad , Adolescente , Ansiedad/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Instituciones Académicas , Autoimagen
18.
Molecules ; 15(5): 3428-40, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20657492

RESUMEN

The enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt colloids stabilized with (R,S)-4,5-dihydro-4,5-diphenyl-2-(6-cyanopyridinyl)imidazoline (CI) supported on a meso-structured ZrO(2) under a pressure of 40 bar of H(2) at 298 K has been investigated(.) The metal loading in all catalysts was 1 wt%. The effect of the amount of chiral modifier on the metal particle size and on the catalytic behavior was analyzed. It was found that as the CI/Pt molar ratio increases from 2.5 to 3.5 the Pt crystal size decreases from 3.0 to 1.8 nm. All catalysts were very active in the studied reaction, with the most active one being the catalyst with smaller Pt particles, whereas the selectivity is higher in those catalysts with larger chiral modified Pt metal particles.


Asunto(s)
Chalconas/química , Platino (Metal)/química , Catálisis , Coloides/química , Hidrogenación , Tamaño de la Partícula , Estereoisomerismo , Circonio
19.
Materials (Basel) ; 13(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093015

RESUMEN

In this work, Au nanoparticles, supported in Al2O3 nanowires (ANW) modified with (3-aminopropyl)trimethoxysilane were synthetized, for their use as catalysts in the hydrogenation reaction of 4-(2-fluoro-4-nitrophenyl)-morpholine and 4-(4-nitrophenyl)morpholin-3-one. ANW was obtained by hydrothermal techniques and the metal was incorporated by the reduction of the precursor with NaBH4 posterior to superficial modification. The catalysts were prepared at different metal loadings and were characterized by different techniques. The characterization revealed structured materials in the form of nanowires and a successful superficial modification. All catalysts show that Au is in a reduced state and the shape of the nanoparticles is spherical, with high metal dispersion and size distributions from 3.7 to 4.6 nm. The different systems supported in modified-ANW were active and selective in the hydrogenation reaction of both substrates, finding for all catalytic systems a selectivity of almost 100% to the aromatic amine. Catalytic data showed pseudo first-order kinetics with respect to the substrate for all experimental conditions used in this work. The solvent plays an important role in the activity and selectivity of the catalyst, where the highest efficiency and operational stability was achieved when ethanol was used as the solvent.

20.
Materials (Basel) ; 13(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947960

RESUMEN

The effect of the ZrO2 loading was studied on spherical SiO2@ZrO2-CaO structures synthetized by a simple route that combines the Stöber and sol-gel methods. The texture of these materials was determined using SBET by N2 adsorption, where the increment in SiO2 spheres' surface areas was reached with the incorporation of ZrO2. Combined the characterization techniques of using different alcoholic dissolutions of zirconium (VI) butoxide 0.04 M, 0.06 M, and 0.08 M, we obtained SiO2@ZrO2 materials with 5.7, 20.2, and 25.2 wt % of Zr. Transmission electron microscopy (TEM) analysis also uncovered the shape and reproducibility of the SiO2 spheres. The presence of Zr and Ca in the core-shell was also determined by TEM. X-ray diffraction (XRD) profiles showed that the c-ZrO2 phase changed in to m-ZrO2 by incorporating calcium, which was confirmed by Raman spectroscopy. The purity of the SiO2 spheres, as well as the presence of Zr and Ca in the core-shell, was assessed by the Fourier transform infrared (FTIR) method. CO2 temperature programmed desorption (TPD-CO2) measurements confirmed the increment in the amount of the basic sites and strength of these basic sites due to calcium incorporation. The catalyst reuse in FAME production from canola oil transesterification allowed confirmation that these calcium core@shell catalysts turn out to be actives and stables for this reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA